

OBJECT ORIENTED PROGRAMMING WITH JAVA
B.Com., COMPUTER APPLICATION / BA. COMPUTER APPLICATION

 Semester – IV

Lesson Writers

Dr. Kampa Lavanya Dr. U. Surya Kameswari
Asst. professor Asst. professor
Dept. of Computer Science Dept. of Computer Science
Acharya Nagarjuna University Acharya Nagarjuna University

Editor

Dr. KAMPA LAVANYA
Asst. Professor

Department of Computer Science
Acharya Nagarjuna University,

Director I/c

Prof. V.VENKATESWARLU
MA., M.P.S., M.S.W., M.Phil., Ph.D.

CENTRE FOR DISTANCE EDUCATION
ACHARAYANAGARJUNAUNIVERSITY

NAGARJUNANAGAR – 522510
Ph:0863-2346222,2346208,

0863-2346259(Study Material)
Website: www.anucde.info

e-mail:anucdedirector@gmail.com

B.A./ B.Com –OBJECT ORIENTED PROGRAMMING WITH JAVA

First Edition: 2021

No. of Copies:

©Acharya Nagarjuna University

This book is exclusively prepared for the use of students of B.A/ B.Com., (Computer Application)

Centre for Distance Education, Acharya Nagarjuna University and this book is meant for limited
Circulation only.

Published by:

Prof. V.VENKATESWARLU,
Director I/c,
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

 Since its establishment in 1976, Acharya Nagarjuna University has been
forging aheadin the path of progress and dynamism, offering a variety of courses and
research contributions. I am extremely happy that by gaining ‘A’ grade from
theNAAC in the year 2016, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from over
443 affiliated college spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04
with the aimof taking higher education to the door step of all the sectors of the society.
The centre will be a great help to thosewho cannot join in colleges, those who cannot
afford the exorbitant fees as regularstudents, and even to housewives desirous of
pursuing higher studies. Acharya Nagarjuna University has started offering B.A., and
B.Com courses at the Degree level and M.A., M.Com.,M.Sc., M.B.A., and L.L.M.,
courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and experienced
teachers. The lessons have been drafted with great care and expertise in the stipulated
time by these teachers. Constructive ideas and scholarly suggestions are welcome
fromstudents and teachers involved respectively. Such ideas will be incorporated for
thegreater efficacy of this distance mode of education. For clarification of doubts and
feedback, weekly classes and contact classes will be arranged at the UG and PG levels
respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in
the form of new courses and by catering to larger number of people. My
Congratulations to all the Directors, Academic Coordinators, Editors and Lesson-
writers of the Centre who have helped in these endeavours.

Prof. K. Gangadhara Rao

Vice-Chancellor I/c
AcharyaNagarjunaUniversity

B.Com., COMPUTER APPLICATION / BA. COMPUTER APPLICATION
Semester – IV

409BCO21: OBJECT ORIENTED PROGRAMMING WITH JAVA
SYLLABUS

Unit: 1
Introduction to OOPs: Problems in Procedure Oriented Approach, Features of Object Oriented
Programming
Introduction to Java: Features of Java, The Java Virtual Machine (JVM), Parts of Java program,
Naming Conventions in Java, Data Types in Java, Operators in Java, Reading Input using
scanner Class, Displaying Output using System. out. Print ln (), Command Line Arguments.

Unit II:
Control Statements in Java: if... else, do... while Loop, while Loop, For loop, Switch Statement,
break Statement, continue Statement
Arrays: Types of Arrays, array name, length,
Strings: Creating Strings, String Class Methods, String Comparison, Immutability of Strings.

Unit III:
Classes and Objects: Object Creation, Initializing the Instance Variables, Access Specifiers,
Constructors
Inheritance: Inheritance, Types of Inheritance
Polymorphism: Method overloading, Operator overloading
Abstract Classes: Abstract Method and Abstract Class

Unit IV:
Packages: Package, Different Types of Packages, Creating Package and Accessing a Package
Streams: Stream classes, Creating a File using File Output Stream, Reading Data from a File
using File Input Stream, Creating a File using File Writer, Reading a File using File Reader

Unit V:
Exception Handling: Errors in Java Program, Exceptions, throws Clause, throw Clause, Types
of Exceptions
Threads: Single Tasking, Multi-Tasking, Uses of Threads, Creating a Thread and Running it,
Terminating the Thread, Thread Class Methods.

REFERENCES:
1. The Complete Reference JAVA Seventh Edition Herbert Schildt. Tata McGraw Hill

 Edition.
2. Core Java: An Integrated Approach, Dr. R. Nageswara Rao &Kogent Learning Solutions

Inc.
3. E. Balaguruswamy, Programming with JAVA, A primer, 3e, TATA McGrawHill
Company

ONLINE RESOURCES:
https://stackify.com/java-tutorials/
https://www.w3schools.com/java/
https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.html

MODEL QUESTION PAPER
(409BCO21)

B.A./B.Com. (Computer Applications) DEGREE EXAMINATION
Fourth Semester

OBJECT ORIENTED PROGRAMMING WITH JAVA
Time : Three hours Maximum : 70 marks

SECTION A — (5 4 = 20 marks)
Answer any FIVE of the following questions.

1. List the applications of Object-Oriented Programming

2. Reading input using Scanner Class.

3. Differentiate between break and continue statement.

4. Differentiate between a class and object.

5. What is the use of super keyword and ‘this’ keyword.

6. How to create and use a package in Java program?

7. Explain method overriding with a suitable example program.

8. How to assign priorities to threads?

SECTION B — (5 10 = 50 marks)

Answer the following questions.

9. (a) Explain the parts of Java program?
Or

(b) What are the data types and operators in Java? Give examples.

10. (a) What are the Control Statements in Java? Explain with suitable examples?
Or

(b) Write a program which stores a list of strings in an ArrayList and then displays the

contents of the list.

11. (a) What is a nested class? Differentiate between static nested classes and non-static

nested classes.

Or

(b) What is inheritance? Explain different forms of inheritance with suitable program.

12. (a) How to access, import a package? Explain with examples.

Or

(b) Explain the file management using File class.

13. (a) What are the uses of ‘throw’ and ‘throws’ clauses for exception handling?

Or

(b) Describe how to create a thread with an example.

CONTENTS

S.NO. LESSON NAME PAGES

1. Introduction to OOP

1.1 – 1.12

2. Introduction to JAVA

2.1 – 2.19

3. Conditional Statements

3.1 – 3.16

4. LOOP Statements

4.1 – 4.13

5. ARRAYS and STRINGS

5.1 – 5.13

6. CLASSES and OBJECTS 6.1 – 6.21

7. Inheritance

7.1 – 7.16

8. Polymorphism

8.1 – 8.16

9. Packages

 9.1 – 9.9

10. Files

10.1 – 10.11

11. Exceptional Handling

11.1 – 11.16

12. Threads

12.1 – 12.10

LESSON- 1

INTRODUCTION TO OOP

OBJECTIVES

By the end of this chapter, you should be able to:

 Understand the basic concepts of Object-Oriented Programming (OOP).
 Identify the key differences between Procedure-Oriented Programming (POP) and

OOP.
 Recognize the problems associated with Procedure-Oriented Programming.
 Explain the fundamental features of OOP, including encapsulation, inheritance,

polymorphism, and abstraction.
 Apply the principles of OOP to design and implement modular and maintainable

software solutions.

STRUCTURE

1.1 Introduction
1.2 Object-Oriented Programming (OOP)

1.2.1 Key Concepts of OOP
 1.2.2 Benefits of OOP
1.3 Procedure Oriented Approach (POA)

1.3.1 Key Characteristics of Procedure-Oriented Approach
1.3.2 Problems with the Procedure-Oriented Approach

1.4 Features of OOP
1.5 Procedural Oriented Programming vs Object-Oriented Programming
1.6 Applications of OOP
1.7 Summary
1.8 Technical Terms
1.9 Self-Assessment Questions
1.10 Suggested Readings

1.1. INTRODUCTION

In the world of software development, different programming paradigms have been used to

solve problems. The two most prominent paradigms are Procedure-Oriented Programming
(POP) and Object-Oriented Programming (OOP). While POP was widely used in the early days
of programming, it presented challenges in managing complex software projects.

This chapter introduces OOP, a paradigm that overcomes the limitations of POP by
organizing software design around data, or objects, rather than functions and logic. You will
learn how OOP offers a more intuitive approach to problem-solving by closely mirroring real-
world entities and their interactions. Explain the fundamental features of OOP. Apply the
principles of OOP to design and implement modular and maintainable software solutions.

1.2 OBJECT-ORIENTED PROGRAMMING (OOP)

is a programming paradigm that organizes software design around data, or objects,
rather than functions and logic. An object in OOP is a self-contained unit that contains both

Centre for Distance Education 1.2 Acharya Nagarjuna University

data (attributes) and methods (functions) that manipulate the data. OOP focuses on creating
reusable code and models real-world entities and their interactions more naturally.

1.2.1 Key Concepts of OOP

The key concepts of Object-Oriented Programming (OOP) are essential principles that
guide the design and implementation of software in an object-oriented way The Key
Concepts of OOP described in Figure 1.1.

Fig 1.1. Key Concepts of OOP

 Object

An object is an instance of a class. It represents a specific implementation of the class
with actual values for its attributes. For example, a Car object might have make set to
"Toyota", model set to "Corolla", and year set to 2021. Each object can interact with
other objects or function independently.

Objects in OOP are fundamental to building complex systems, as they allow for
encapsulation of data and behavior, promoting modularity and reuse. The concept is
shown in Figure 1.2.

Fig 1.2. Object concept in OOP

OOP with Java 1.3 Introduction to OOP

 Class

A class is a blueprint for creating objects. It defines a data structure that holds attributes
(data) and methods (functions) that manipulate this data. Classes allow programmers to
create objects with specific properties and behaviors, providing a template that ensures
consistency across similar objects.

For example, consider a class Car. The Car class might have attributes like make, model,
and year, and methods like startEngine and stopEngine.

Every car object created from the Car class will have these attributes and methods, but
with different values. The concept is shown in Figure 1.3.

Fig 1.3. Class concept in OOP

 Encapsulation:

Encapsulation is the bundling of data and methods that operate on that data within a
single unit, usually a class. It restricts access to certain components, which is essential
for protecting the integrity of the data. By providing public methods to access private
data, encapsulation enables controlled interaction with the data.

 Inheritance:

Inheritance is a mechanism that allows a new class, known as a subclass, to inherit
attributes and methods from an existing class, known as a superclass. This promotes code
reuse and establishes a natural hierarchy among classes. For example, a Circle and Box
might inherit from the Shape class, sharing common attributes and methods while
introducing new ones Circle and Box. The concept is shown in Figure 1.4.

Fig 1.4. Inheritance concept in OOP

Centre for Distance Education 1.4 Acharya Nagarjuna University

 Polymorphism:

Polymorphism allows objects of different classes to be treated as objects of a common
superclass. It enables a single interface to represent different underlying data types. For
instance, both the Shape and Box classes might implement a Draw method, but each
class could have a different implementation of this method. The concept is shown in
Figure 1.5.

Fig 1.5. Polymorphism Concept in OOP

 Abstraction:

Abstraction involves hiding the complex implementation details of a class and exposing
only the necessary interfaces to the user. It simplifies interaction with complex systems
by focusing on the essential features and ignoring irrelevant details.

1.2.2 Benefits of OOP:

Object-Oriented Programming (OOP) offers several benefits that make it a preferred
approach in modern software development. Here are the key benefits of OOP followed and
described in figure 1.6:

Fig 1.6Key benefits of OOP

OOP with Java 1.5 Introduction to OOP

 Modularity and Reusability

 Modularity: OOP encourages the development of modular software, where the
program is divided into discrete, manageable units or classes. Each class encapsulates
data and behavior, making it easier to manage and understand.

 Reusability: Classes can be reused across different programs, reducing redundancy.
Inheritance further promotes code reuse by allowing new classes to be created based
on existing ones, minimizing the need to write code from scratch.

 Improved Maintainability
 Ease of Maintenance: The modular nature of OOP makes it easier to update or

modify parts of a program without affecting the entire system. Since changes are often
localized within specific classes, maintaining the software becomes more
straightforward and less error-prone.

 Encapsulation: By encapsulating data and exposing only necessary interfaces, OOP
helps maintain the integrity of the data and reduces the risk of unintended side effects
when making changes.

 Code Flexibility and Extensibility
 Polymorphism: OOP allows methods to be overridden or objects to be treated as

instances of their superclass, enabling flexible and dynamic code. This allows
developers to write more generic and adaptable code that can work with different
types of objects.

 Inheritance: New functionality can be added to existing classes through inheritance,
allowing developers to extend or modify behavior without changing the existing
codebase. This makes it easier to scale applications as new requirements emerge.

 Problem-Solving Capabilities

 Real-World Modeling: OOP aligns closely with real-world concepts, making it
easier to model complex systems and problems. By representing real-world entities as
objects with attributes and behaviors, OOP provides an intuitive way to design and
implement software.

 Abstraction: OOP allows developers to focus on high-level problem-solving by
abstracting away complex details. This simplifies the design process and allows
programmers to concentrate on the essential aspects of the problem.

 Data Security
 Encapsulation: Encapsulation helps protect data by restricting access to it. By

controlling how data is accessed and modified, OOP ensures that the internal state of
an object remains consistent and secure.

 Access Control: OOP provides mechanisms to define access levels (e.g., public,
private, protected) for class members, ensuring that sensitive data is not exposed or
altered inappropriately.

 Scalability and Manageability
 Scalability: OOP systems are inherently scalable due to their modular design. New

features can be added with minimal impact on existing code, making it easier to scale
applications as they grow in size and complexity.

 Manageability: The clear structure of OOP programs, with distinct classes and well-
defined interfaces, makes large codebases easier to manage, understand, and
document.

Centre for Distance Education 1.6 Acharya Nagarjuna University

 Improved Collaboration
 Team Development: OOP's modular approach allows different team members to

work on separate classes or modules simultaneously, improving collaboration and
speeding up development.

 Code Sharing: Reusable classes and components can be shared across teams or
projects, fostering collaboration and reducing duplication of effort.

 Increased Productivity
 Rapid Development: OOP's features like inheritance, polymorphism, and reusable

components can significantly speed up the development process. Developers can
build upon existing code rather than starting from scratch, leading to faster and more
efficient coding.

 Code Reuse: The ability to reuse classes across different projects or parts of a
program reduces development time and increases productivity.

 Better Software Design
 Design Patterns: OOP encourages the use of design patterns, which are proven

solutions to common design problems. These patterns help in creating robust,
scalable, and maintainable software architectures.

 Clear Structure: OOP provides a clear and logical structure for software design,
making it easier to plan, develop, and understand complex systems.

 Interoperability with Modern Frameworks and Tools
 Support for Frameworks: Many modern software development frameworks and

libraries are designed with OOP principles in mind. Using OOP makes it easier to
integrate with these tools and take advantage of their capabilities.

 Adaptation to New Technologies: OOP principles are widely adopted in various
programming languages, making it easier to adapt to new technologies, platforms, and
languages that also support OOP.

These benefits make OOP a powerful and effective approach for developing complex,
scalable, and maintainable software systems.

1.3 PROCEDURE ORIENTED APPROACH (POA)

The Procedure-Oriented Approach (also known as Procedural Programming) is a
programming paradigm that is centred around the concept of procedure calls, where
procedures, also known as routines, subroutines, or functions, are the fundamental building
blocks. This approach is one of the earliest and most widely used paradigms, especially in
languages like C, Pascal, and Fortran.

1.3.1 Key Characteristics of Procedure-Oriented Approach:

The Procedure-Oriented Approach is a programming paradigm that centers around the
concept of organizing code into procedures or functions. This approach is widely used in
languages like C, Pascal, and Fortran. Below are the key characteristics of the Procedure-
Oriented Approach and also concept is illustrated in figure 1.7:

 Focus on Functions

 The core idea of procedural programming is to structure the program as a series of
functions or procedures, each designed to perform a specific task. Functions are the

OOP with Java 1.7 Introduction to OOP

building blocks of the program, and the overall program is a sequence of these
function calls.

 Example: In a program that calculates the area of a rectangle, functions might include
get Length (), get Width (), and calculate Area ().

 Sequential Execution
 The execution flow in a procedural program typically follows a linear and sequential

order. The program starts from a specific entry point (often the main function) and
proceeds through a series of function calls in a defined sequence.

 Example: A procedural program might execute functions in the order they are called
within the main function, one after the other.

 Global Data Sharing
 Data in procedural programming is often stored in global variables that are accessible

by multiple functions. These global variables are shared across different parts of the
program, making it easier for functions to operate on the same data.

 Example: A global variable counter might be used and modified by various functions
to track the number of times an operation is performed.

Fig 1.7. Key Characteristics of POA

 Top-Down Design Approach

 Procedural programming often follows a top-down design methodology, where the
main problem is broken down into smaller, more manageable sub-problems. Each
sub-problem is then solved by a specific function.

 Example: In designing a program to manage a library system, the top-down approach
would first identify major functions like issue Book (), return Book (), and search
Catalog (), and then further break these down into smaller functions.

Centre for Distance Education 1.8 Acharya Nagarjuna University

 Emphasis on Procedures Over Data
 The primary focus in the procedural approach is on the procedures or functions

themselves rather than the data being processed. The functions dictate how the data is
manipulated and processed.

 Example: In a payroll system, the focus might be on functions like calculate Salary ()
and generate Pay slip () rather than on the employee data being processed.

 Limited Modularity

 While procedural programming allows for some degree of modularity by dividing the
program into functions, this modularity is limited compared to Object-Oriented
Programming (OOP). Functions are not encapsulated within objects and often depend
on global data, reducing their independence.

 Example: Functions in a procedural program can be reused, but because they rely on
global variables, their reusability is limited to contexts where those global variables
are applicable.

 Reusability

 Functions can be reused within the program, especially if they are general-purpose.
However, the reusability is not as robust as in OOP, where classes and objects can be
more easily reused across different programs.

 Example: A function that calculates the sum of an array can be reused in different
parts of the program, but it might need to be rewritten for a different context where
the array format or data type changes.

 No Data Hiding
 In procedural programming, there is no inherent mechanism for hiding data from

other parts of the program. Data is often accessible to any function that needs it,
leading to potential security issues and difficulties in maintaining the code.

 Example: A global variable userBalance might be accessible and modifiable by any
function, leading to potential inconsistencies or security risks.

 Linear Code Structure
 Procedural programs tend to have a linear structure, where the control flow is

straightforward and follows the sequence of function calls. This can make the
program easier to understand but limits its flexibility.

 Example: A program that reads data from a file, processes it, and then writes the
output to another file would follow a linear sequence of read(), process(), and write()
functions.

These characteristics define how procedural programs are structured and how they
operate. While effective for simpler tasks, this approach has limitations when dealing with
complex systems, leading many developers to adopt Object-Oriented Programming (OOP)
and other modern paradigms.

1.3.2 Problems with the Procedure-Oriented Approach:

The Procedure-Oriented Approach, while effective for smaller and simpler programs,
faces several limitations when applied to more complex software development. Here are the
key problems associated with the Procedure-Oriented Approach and are described in figure

OOP with Java 1.9 Introduction to OOP

1. Difficulty in Managing Large Programs
 Problem: As the size and complexity of a program increase, it becomes difficult to

manage and maintain the code. Functions in procedural programming are often tightly
coupled, meaning that changes in one part of the program can have widespread,
unintended effects on other parts.

 Impact: This tight coupling leads to "spaghetti code," where the program's logic is
tangled, making it hard to follow, debug, and maintain.

2. Poor Data Security and Integrity

 Problem: Procedural programming typically relies on global variables that can be
accessed and modified by any function. This lack of data encapsulation makes it easy
for one function to inadvertently alter the data in ways that break the program's logic.

 Impact: This can introduce subtle bugs that are hard to track down and fix, especially
in large programs where many functions might interact with the same data.

3. Limited Code Reusability
 Problem: Functions in procedural programming are often written to handle specific

tasks with specific data, making them difficult to reuse in other contexts without
significant modification.

 Impact: This lack of reusability leads to code duplication, where similar code is
written multiple times for slightly different tasks, increasing the program's size and
maintenance burden.

4. Lack of Modularity
 Problem: Procedural programs often lack clear modularity because the separation of

concerns is not enforced as strictly as in Object-Oriented Programming. Functions are
not inherently designed to be independent modules, leading to code that is more
monolithic and harder to maintain.

 Impact: This reduces the ability to isolate and manage different parts of the program
independently, making the program harder to understand and modify.

5. Inflexibility

 Problem: Procedural programming is less adaptable to changes. Adding new features
or modifying existing ones often requires changes across multiple functions and
global data structures.

 Impact: This can make the program brittle and prone to errors when changes are
made, reducing its long-term viability and maintainability.

6. Challenges in Modeling Real-World Problems
 Problem: Procedural programming focuses on functions and procedures, which do

not naturally correspond to real-world entities and their interactions. This makes it
difficult to model complex systems where objects with attributes and behaviors
interact in dynamic ways.

 Impact: This disconnect between the problem domain and the program structure can
lead to less intuitive code, making it harder to understand and maintain, especially for
larger projects.

7. Poor Scalability
 Problem: As a procedural program grows, the difficulty of managing the codebase

increases exponentially. The lack of clear modularity, encapsulation, and reusability
makes it hard to scale the program effectively.

Centre for Distance Education 1.10 Acharya Nagarjuna University

 Impact: This can limit the program's ability to evolve and grow over time, making it
less suitable for long-term projects or systems that require continuous development.

8. Increased Risk of Errors

 Problem: Because functions in procedural programming often interact with global
data and other functions in complex ways, the risk of introducing errors during
development and maintenance is higher.

 Impact: This increases the overall cost of development and maintenance, as more
time must be spent on debugging and testing to ensure the program behaves as
expected.

These problems are some of the key reasons why many developers and organizations
have moved towards Object-Oriented Programming (OOP) and other modern paradigms that
provide better support for modularity, encapsulation, reusability, and scalability.

1.4 FEATURES OF OBJECT-ORIENTED PROGRAMMING

Here are the key features of Object-Oriented Programming (OOP) listed in a concise,
point-wise format and shown in Table 1.1:

Table 1.1 Features of OOP

S.No. Feature Description
1. Encapsulation Combine data with functions
2. Abstraction Hides implementation
3. Inheritance Inherits super class properties to

sub class
4. Polymorphism Object with different forms
5. Modularity Split program into parts
6. Reusability Reuse of existing code
7. Dynamic Binding Runtime Polymorphism
8. Message Passing Objects communication

1. Encapsulation: Bundles data (attributes) and methods (functions) into a single unit

(class) and restricts access to some components to protect data integrity.
2. Abstraction: Hides complex implementation details and exposes only the necessary

parts, allowing focus on what an object does rather than how it does it.
3. Inheritance: Allows a new class to inherit properties and behaviors from an existing

class, promoting code reusability and reducing redundancy.
4. Polymorphism: Enables objects of different classes to respond to the same function

call in different ways, enhancing flexibility and scalability.
5. Classes and Objects: Classes serve as blueprints for creating objects, which are

instances containing both data and methods that manipulate that data.
6. Modularity: Encourages the division of a program into smaller, self-contained

modules (classes), improving code organization, readability, and maintainability.
7. Reusability: Facilitates the reuse of existing code in new applications, saving time

and reducing errors.
8. Dynamic Binding: Determines the method to be invoked at runtime, providing

flexibility and supporting polymorphism.
9. Message Passing: Objects communicate by sending messages (function calls) to each

other, enabling complex behaviors through object interactions.

OOP with Java 1.11 Introduction to OOP

1.5 PROCEDURAL ORIENTED PROGRAMMING VS OBJECT-ORIENTED
 PROGRAMMING

Table 1.2 Differences between POA and OOP
Procedural -Oriented Programming Object-Oriented Programming
 Program is split into functions Program is split into objects
 Top-down approach Bottom-up approach
 No access specifiers Has access specifiers
 Less secure More Secure
 Overload is not possible Overload is possible
 No data hiding Has data hiding
 No inheritance Has inheritance
 Focus more on function Focus more on data
 No code reusability Has code reusability

1.6 APPLICATION OF OOP

Here are the key applications of Object-Oriented Programming (OOP) listed in a
concise, point-wise format:

 Software Development:

o OOP is widely used in developing large-scale software systems, including enterprise
applications, due to its modularity, reusability, and scalability.

 Game Development:
o OOP is ideal for creating complex game environments where characters, objects, and

interactions are modeled as objects with attributes and behaviors.
 Graphical User Interface (GUI) Design:

o OOP facilitates the development of GUI applications where elements like buttons, windows,
and dialogs are treated as objects that can be manipulated independently.

 Simulation and Modeling:
o OOP is used in simulations (e.g., flight simulators, scientific models) where real-world

entities and their interactions are represented as objects.
 Web Development:

o OOP principles are used in web development frameworks and languages (like JavaScript,
Python, and PHP) to create dynamic, object-oriented web applications.

 Database Management Systems (DBMS):
o OOP is used in developing DBMS software where data can be modeled as objects, allowing

for complex data relationships and operations.
 Real-time Systems:

o OOP is applied in developing real-time systems, such as operating systems and embedded
systems, where modularity and efficient code management are critical.

 Distributed Systems:
o OOP is used in building distributed systems where objects can communicate across networks,

facilitating the development of scalable, distributed applications.
 Artificial Intelligence (AI) and Machine Learning (ML):

o OOP is used to develop AI and ML models, where different components (e.g., data
processing, model training, prediction) are encapsulated as objects.

 Mobile Application Development:
o OOP is integral to developing mobile apps, where different components of the app are

encapsulated into objects, improving code manageability and reusability.

These applications demonstrate the versatility and effectiveness of OOP in various
domains, making it a foundational paradigm in modern software development.

Centre for Distance Education 1.12 Acharya Nagarjuna University

1.7 SUMMARY

Object-Oriented Programming (OOP) is a programming paradigm that organizes
software design around objects, which are instances of classes. It emphasizes key concepts
like encapsulation, abstraction, inheritance, and polymorphism. Encapsulation bundles data
and methods together, while abstraction hides complex implementation details. Inheritance
allows new classes to inherit properties from existing ones, promoting code reuse.
Polymorphism enables objects to be treated as instances of their parent class, allowing for
flexible code. OOP is widely used in modern software development due to its modularity,
reusability, and ability to model real-world scenarios effectively.

1.8 TECHNICAL TERMS

 Object
 Class
 Encapsulation
 Abstraction
 Inheritance
 Polymorphism
 Method
 Attribute
 Dynamic Binding and etc.

1.9 SELF ASSESSMENT QUESTIONS

Essay questions:
1. Explain the principles of Object-Oriented Programming with examples.
2. Discuss the advantages of using OOP over procedural programming.
3. Describe the concept of inheritance in OOP with an example.
4. How does polymorphism enhance the flexibility of a program? Provide an example.
5. Explain encapsulation and its importance in software development.

 Short questions:

1. What is an object in OOP?
2. Define a class in the context of OOP.
3. What is encapsulation?
4. Explain the concept of inheritance.
5. What is polymorphism in OOP?

1.10 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021), McGraw-
Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005), O'Reilly
Media

3. "Effective Java" by Joshua Bloch,3rd Edition (2018), Addison-Wesley Professional
4. "Object-Oriented Analysis and Design with Applications" by Grady Booch, 3rd

Edition (2007), Addison-Wesley Professional
5. "Thinking in Java" by Bruce Eckel,4th Edition (2006), Prentice Hall

 Dr. KAMPA LAVANYA

LESSON- 2

INTRODUCTION TO JAVA

OBJECTIVES

By the end of this chapter, you should be able to:

 Understand Core Java Concepts.
 Develop Problem-Solving Skills Using Java.
 Build Foundational Programming Skills.
 Encourage Practical Application of Java Knowledge.
 Prepare for Advanced Java and Programming Studies.

STRUCTURE

2.1 Introduction
2.2 Features of JAVA
2.3 Parts of JAVA

2.3.1 Java Development Kit (JDK)
2.3.2 Java Runtime Environment (JRE)
2.3.3 Java Virtual Machine (JVM)
2.3.4 Java Application Programming Interface (API)

2.4 Java Naming Conventions
2.5 Data Types
2.6 Operators
2.7 Input and Output Statements
2.8 Command Line Arguments
2.9 Summary
2.1 Technical Terms
2.11 Self-Assessment Questions
2.12 Suggested Readings

2.1. INTRODUCTION

Java is a versatile, high-level programming language that emphasizes platform
independence using the Java Virtual Machine (JVM), which allows Java programs to run on
any device with a compatible JVM. The language is structured into several key parts: the Java
Development Kit (JDK) for development, the Java Runtime Environment (JRE) for running
applications, and the JVM itself for executing compiled bytecode. Java adheres to specific
naming conventions to ensure code readability, such as using Pascal Case for class names and
camelCase for method and variable names. It supports various data types, including integers,
floats, characters, and Booleans, and provides operators for performing arithmetic, relational,
and logical operations. Input and output in Java are handled through statements like System.
out. Print ln () and Scanner, enabling interaction with users. Additionally, Java allows the use
of command-line arguments, enabling users to pass parameters to a program at runtime,
enhancing flexibility and control in program execution.

This chapter introduces Java, covers the fundamental features of java, parts of Java,
naming conventions, data types, operators, input and output statements, and command line
arguments.

Centre for Distance Education 2.2 Acharya Nagarjuna University

2.2 JAVA FEATURES

Java is a powerful and versatile programming language known for its rich set of
features that make it one of the most popular choices for developers worldwide. Below are
some of the key features that define Java and are shown in Figure 2.1 :

Figure 2.1 Feature of Java

 Platform Independence:
Java's most celebrated feature is its ability to run on any device with a Java Virtual Machine
(JVM). This "write once, run anywhere" (WORA) capability ensures that Java applications
are portable across different environments, from desktops to servers to mobile devices.
 Object-Oriented:
Java is an object-oriented programming language, which means it organizes software design
around objects, rather than functions and logic. This approach encourages modular and
reusable code, making Java programs easier to maintain and scale.
 Simple and Easy to Learn:
Java is designed to be easy to use, with a syntax that is clean and easy to understand,
especially for those familiar with other programming languages like C or C++. Java removes
complex features like pointers and operator overloading, simplifying the learning curve.
 Robust and Secure:
Java is designed with a strong focus on error handling and runtime checking, making it less
prone to crashes and runtime errors. It also includes features like garbage collection to
manage memory automatically. Java's security model, including the JVM’s ability to sandbox
applications, makes it a secure choice for developing applications, especially for web-based
environments.
 Multithreaded:
Java natively supports multithreading, allowing the concurrent execution of two or more
threads. This feature is crucial for developing applications that need to perform multiple tasks
simultaneously, such as games, server applications, and real-time systems.
 High Performance:
While Java is an interpreted language, the introduction of Just-In-Time (JIT) compilers and
performance enhancements in the JVM allows Java applications to run with high efficiency,
making it competitive with natively compiled languages.
 Distributed:
Java is designed for distributed computing, enabling developers to create applications that
can run across networks and interact with other services. It provides robust support for

OOP with Java 2.3 Introduction to JAVA

networking through the java.net package and APIs for Remote Method Invocation (RMI) and
Enterprise JavaBeans (EJB).
 Dynamic:
Java is a dynamic language, capable of adapting to an evolving environment. It supports
dynamic loading of classes and functions, allowing for the development of flexible and
extensible programs. Java programs can also adapt to new environments and systems without
requiring changes in the source code.
 Memory Management:
Java provides automated memory management through its garbage collection mechanism,
which automatically removes objects that are no longer in use. This reduces the burden on
developers to manage memory manually, minimizing memory leaks and other memory-
related issues.
 Rich API and Libraries:
Java comes with a vast set of APIs and libraries that provide ready-to-use functions for
various tasks, from data structures and algorithms to networking and database management.
This extensive library support accelerates development and reduces the need for third-party
libraries.

These features collectively make Java a preferred language for a wide range of
applications, from web and mobile applications to enterprise-level systems and scientific
computing.

Table 2.1 Features of Java

S.No Feature Description
1. Simple Java is easy to learn, and its syntax is quite simple,

clean and easy to understand
2. Object Oriented

Java can be easily extended as it is based on Object
Model

3. Robust

automatic Garbage Collector and Exception Handling.

4. Platform Independent bytecode is platform independent and can be run on
any machine, allow security

5. Multi-Threading

utilizes same memory and other resources to execute
multiple threads at the same time

6. High Performance the use of just-in-time compiler
7. Distributed designed to run on computer networks

2.3 PARTS OF JAVA

Java is composed of several key parts that work together to enable the development,
execution, and management of Java applications. Here’s an overview of the main parts of
Java:

2.3.1 Java Development Kit (JDK):

The Java Development Kit (JDK) is a comprehensive suite of tools and libraries
necessary for developing Java applications. It is the primary component for Java developers,
offering everything required to write, compile, debug, and run Java applications. The JDK is
available for various operating systems, including Windows, macOS, and Linux, ensuring
that Java development can be done across multiple platforms.

Centre for Distance Education 2.4 Acharya Nagarjuna University

Key Components of the JDK:
 Compiler (javac):
o The Java compiler (javac) converts Java source code (.java files) into bytecode (.class

files). This bytecode is platform-independent and can be executed by the Java Virtual
Machine (JVM). The compiler checks the code for errors and ensures that it adheres
to Java syntax and rules before generating bytecode.

 Java Runtime Environment (JRE):
o The JRE is bundled with the JDK and provides the runtime environment necessary to

execute Java applications. It includes the JVM, core libraries, and other supporting
components that allow Java programs to run. While the JRE can run Java
applications, it does not include tools for developing them.

 Debugger (jdb):
o The Java debugger (jdb) is a tool used to find and fix bugs in Java programs. It allows

developers to step through code, set breakpoints, inspect variables, and evaluate
expressions, making it easier to identify and resolve issues in the code.

 JavaDoc:
o JavaDoc is a documentation generator that creates API documentation in HTML

format from comments in the source code. This tool is essential for generating clear
and professional documentation, which is crucial for maintaining and sharing code
with others.

 Java Archive Tool (jar):
o The Java Archive tool (jar) is used to package Java classes and associated resources

(such as images and text files) into a single archive file with a .jar extension. This
archive can be used to distribute and deploy Java applications or libraries. The JAR
format also supports compression, reducing the file size of the archive.

 Java Virtual Machine (JVM):
o While the JVM is technically part of the JRE, it is included in the JDK as well, since

the JDK encompasses all the components required to both develop and run Java
applications. The JVM is responsible for executing the bytecode produced by the Java
compiler.

 Additional Tools:
o The JDK includes several other tools that assist in Java development, such as:

 javap: A class file disassembler that helps developers understand the structure of
compiled classes.

 jconsole: A monitoring tool that provides information about the performance and
resource consumption of Java applications.

 jarsigner: A tool for signing JAR files, ensuring the authenticity and integrity of
the code within them.

The JDK is essential for Java developers, as it provides all the tools necessary for
writing, compiling, debugging, and running Java applications. Whether developing simple
applications or complex enterprise-level systems, the JDK offers the flexibility and
functionality required to manage the entire software development lifecycle in Java.

2.3.2 Java Runtime Environment (JRE):

The Java Runtime Environment (JRE) is a crucial component of the Java platform,
providing the necessary environment for running Java applications. It includes everything
required to execute Java programs but does not contain the development tools (like the
compiler) found in the Java Development Kit (JDK). The JRE is used by end-users who need
to run Java programs but do not need to develop them.

OOP with Java 2.5 Introduction to JAVA

Key Components of the JRE:
 Java Virtual Machine (JVM):
o The JVM is the core of the JRE and is responsible for executing Java bytecode. It

provides the abstraction that allows Java programs to run on any platform, making
Java platform independent. The JVM interprets or compiles bytecode into machine
code that the operating system can execute. It also manages memory allocation,
garbage collection, and runtime security checks.

 Core Libraries:
o The JRE includes a comprehensive set of libraries that provide the necessary

functionality to run Java applications. These libraries include essential classes and
APIs that Java programs use to perform tasks such as:
 Input/Output Operations: Libraries like java.io for reading from and writing to

files.
 Networking: Libraries like java.net for networking capabilities.
 Utilities: Libraries like java.util that provide data structures (e.g., collections), date

and time utilities, and other common utilities.
 Math Functions: Libraries like java.math for complex mathematical operations.

 Java Class Loader:
o The class loader is part of the JVM that dynamically loads Java classes into memory

as needed. It allows Java applications to load classes from various sources, such as the
local file system, network, or even a remote server. The class loader also ensures that
the correct version of a class is loaded, which is essential for maintaining application
stability.

 Java Security Manager:
o The security manager in the JRE controls access to system resources by Java

applications. It enforces security policies that prevent potentially harmful operations,
such as reading or writing to files, accessing network connections, or executing
certain native code. This is particularly important for running Java applets or
applications from untrusted sources.

 Java Plug-in:
o The Java plug-in enables web browsers to run Java applets. It allows Java applications

embedded in web pages to be executed within the browser environment. Although
less commonly used today with the decline of applets, it was an essential part of
Java’s role in web development.

 Java Web Start:
o Java Web Start allows users to run Java applications directly from the web. It

downloads the necessary Java application files from the internet and launches them,
simplifying the distribution and installation of Java applications.

The JRE is essential for running Java applications on any device. It is used by end-users

who need to execute Java programs but do not need to write or compile Java code. The JRE
ensures that Java applications can run consistently across different platforms by providing a
standardized runtime environment. Whether it's a desktop application, a server-side
application, or a small applet, the JRE provides the necessary components to run the Java
code reliably and securely. In summary, the JRE is a runtime environment that includes the
JVM, core libraries, and other components needed to execute Java applications, ensuring that
Java programs can run on any platform with a compatible JRE installed.

Centre for Distance Education 2.6 Acharya Nagarjuna University

2.3.3 Java Virtual Machine (JVM):

The Java Virtual Machine (JVM) is a critical component of the Java platform,
responsible for executing Java bytecode on any device or operating system the complete
architecture of JVM is shown in Figure 2.2. The JVM provides an abstraction layer that
allows Java applications to be "write once, run anywhere," meaning that the same Java
program can run on any platform without modification, if a compatible JVM is available.

Key Components and Functions of the JVM:
 Class Loader:
o The class loader is a part of the JVM that loads Java class files into memory. It reads

the .class files containing Java bytecode and brings them into the runtime
environment. The class loader also performs tasks such as verifying the bytecode and
linking the classes by resolving references to other classes, ensuring that all
dependencies are satisfied before execution begins.

 Runtime Memory Areas (JVM Memory):
o The JVM manages memory during the execution of Java programs using different

memory areas:
 Heap: The heap is where all the objects and their corresponding instance variables

are stored. It is shared among all threads.
 Stack: Each thread in a Java application has its own stack. The stack stores method

call frames, including local variables and partial results. The stack is also where
method return values are stored.

 Method Area: The method area is a shared memory space that stores class-level data
such as the runtime constant pool, field and method data, and code for methods.

 Program Counter (PC) Register: The PC register keeps track of the current
instruction being executed in the thread.

 Native Method Stack: This stack is used for native method calls, which are methods
written in languages other than Java, such as C or C++.

 Execution Engine:
o The execution engine is the core of the JVM, responsible for executing the bytecode

instructions. It consists of several components:
 Interpreter: The interpreter reads and executes the bytecode instructions one at a

time. While the interpreter is simple and fast, it can be slower because it processes
each instruction individually.

 Just-In-Time (JIT) Compiler: To improve performance, the JIT compiler compiles
frequently executed bytecode sequences into native machine code at runtime. This
compiled code is then executed directly by the CPU, leading to significant
performance gains.

 Garbage Collector: The garbage collector automatically manages memory by
identifying and disposing of objects that are no longer in use, freeing up memory
and preventing memory leaks.

 Java Native Interface (JNI):
o The JNI is an interface that allows Java code running in the JVM to call and be called

by native applications and libraries written in other languages like C, C++, or
assembly. This capability is important for integrating Java applications with legacy
systems or specialized hardware.

OOP with Java 2.7 Introduction to JAVA

 Native Method Libraries:
o These are libraries that contain native code, usually written in languages other than

Java, which the JVM can call. These libraries are platform-specific and provide low-
level operations that are not possible in standard Java.

Fig 2.2 The Architecture of JVM with Key Components

Key Characteristics of the JVM:
 Platform Independence:
o The JVM is what makes Java platform independent. By translating Java bytecode into

machine-specific code, the JVM allows the same Java program to run on different
types of hardware and operating systems without modification.

 Memory Management:
o The JVM manages memory through its garbage collection mechanism, which

automatically reclaims memory by removing objects that are no longer in use. This
helps prevent memory leaks and improves application stability.

 Security:
o The JVM includes built-in security features, such as the bytecode verifier, which

checks for illegal code that could violate access rights or cause security issues. The
security manager and class loaders further enhance the security by controlling access
to system resources and ensuring that only trusted code is executed.

The JVM is the cornerstone of the Java platform, providing the environment in which

Java programs execute. Its ability to abstract the underlying hardware and operating system
allows Java developers to focus on writing code without worrying about platform-specific
details. The JVM’s features, such as garbage collection, JIT compilation, and security
mechanisms, contribute to Java’s reputation for being robust, secure, and high-performance.

The JVM is a powerful and flexible component that enables the execution of Java

applications across various platforms, managing memory, ensuring security, and optimizing
performance through advanced execution techniques.

Centre for Distance Education 2.8 Acharya Nagarjuna University

2.3.4 Java Application Programming Interface (API):

The Java Application Programming Interface (API) is a vast collection of pre-written
packages, classes, and interfaces that provide developers with ready-to-use functionalities for
various tasks. The Java API simplifies the process of writing Java applications by offering
reusable code components, enabling developers to focus on the unique aspects of their
applications rather than reinventing the wheel for common tasks.

Key Components of the Java API:
 Core Libraries:
o The core libraries form the foundation of the Java API, providing essential classes and

interfaces needed for basic programming tasks. These libraries include:
 java.lang: Contains fundamental classes such as String, Math, Integer, and Thread,

which are automatically imported into every Java program.
 java.util: Provides utility classes for data structures (like ArrayList, HashMap), date

and time manipulation, random number generation, and more.
 java.io: Offers classes for input and output operations, including reading from and

writing to files, handling streams, and performing serialization.
 Networking Libraries:
o Java’s networking libraries, found primarily in the java.net package, enable

developers to build networked applications. These libraries support operations like
connecting to remote servers, sending and receiving data over the network, handling
URLs, and implementing sockets for communication.

 Database Connectivity (JDBC):
o The Java Database Connectivity (JDBC) API, located in the java.sql package, allows

Java applications to interact with relational databases. JDBC provides methods to
connect to a database, execute SQL queries, and retrieve and manipulate data from a
database.

 User Interface (UI) Libraries:
o Java offers several APIs for building graphical user interfaces (GUIs):
 AWT (Abstract Window Toolkit): Provides the basic components for building

simple graphical user interfaces.
 Swing: An extension of AWT, Swing provides a richer set of components for

building more sophisticated UIs, such as buttons, tables, text fields, and more.
 JavaFX: A more modern library for creating rich internet applications (RIAs) with

advanced UI features, including 2D/3D graphics, media playback, and web
rendering.

 Concurrency and Multithreading:
o The java.util. concurrent package contains classes and interfaces that simplify the

development of multithreaded applications. It includes utilities for managing threads,
synchronizing data between threads, and implementing high-level concurrency
patterns like executors, thread pools, and concurrent data structures.

 Security Libraries:
o Java’s security API, primarily found in the java. security package, offers tools for

implementing security features in Java applications. This includes classes for
encryption, decryption, key generation, digital signatures, and secure random number
generation. Java also provides APIs for managing authentication and authorization
through the Java Authentication and Authorization Service (JAAS).

OOP with Java 2.9 Introduction to JAVA

 XML Processing:
o Java provides APIs for working with XML, such as the javax.xml.parsers package for

parsing XML documents, the javax.xml.bind (JAXB) package for binding XML
documents to Java objects, and the javax.xml. transform package for transforming
XML documents.

 Web and Enterprise Development:
o Java has a robust set of APIs for developing web and enterprise applications:
 Servlets and JSP: Found in the javax.servlet and javax.servlet.jsp packages, these

APIs allow developers to create dynamic web content using Java.
 Java EE (Enterprise Edition): Provides a comprehensive set of APIs for building

large-scale, distributed, and transactional applications, including technologies like
EJB (Enterprise JavaBeans), JMS (Java Message Service), and JPA (Java
Persistence API).

 Remote Method Invocation (RMI):
o The RMI API, found in the java.rmi package, allows Java applications to invoke

methods on remote objects, enabling distributed computing. This API is used to create
applications that can communicate over a network, with objects residing on different
machines.

The Java API is a critical component of the Java platform, enabling developers to write
powerful applications without needing to implement every functionality from scratch. By
providing a rich set of pre-built classes and interfaces, the Java API accelerates development,
enhances code reliability, and promotes the reuse of well-tested code components. Whether
working on simple applications or complex enterprise systems, developers can rely on the
Java API to provide the tools and resources needed to build robust and efficient software. The
Java API is an extensive and versatile toolkit that provides everything from basic
programming constructs to advanced functionalities for networking, database access, user
interface design, and more, making it an essential resource for Java developers.

2.4 NAMING CONVENTIONS

Java naming conventions are guidelines for naming various elements in a Java
program, ensuring that code is consistent, readable, and maintainable. Adhering to these
conventions is crucial, especially when working in teams or contributing to large codebases.

1. Class Names:

 Convention: Use PascalCase (also known as UpperCamelCase).
 Description: Each word in the class name starts with an uppercase letter. Class names

should typically be nouns or noun phrases, as they represent objects or entities.
 Example: Customer, EmployeeDetails, InvoiceProcessor.

2. Method Names:
 Convention: Use camelCase.
 Description: Start with a lowercase letter, and capitalize the first letter of each

subsequent word. Method names should typically be verbs or verb phrases, as they
represent actions or behaviors.

 Example: calculate Total, getEmployeeName, processInvoice.
3. Variable Names:

 Convention: Use camelCase.

Centre for Distance Education 2.10 Acharya Nagarjuna University

 Description: Like method names, variable names start with a lowercase letter, and
subsequent words are capitalized. Variable names should be descriptive and represent
the data they hold.

 Example: totalAmount, employeeName, invoiceList.
4. Constant Names:

 Convention: Use ALL_UPPERCASE with words separated by underscores.
 Description: Constants are usually declared using the final keyword and should be

named in all uppercase letters to distinguish them from variables. Each word is
separated by an underscore.

 Example: MAX_HEIGHT, DEFAULT_TIMEOUT, PI.
5. Package Names:

 Convention: Use lowercase letters.
 Description: Package names are typically written in all lowercase letters and often

follow the reverse domain name convention to avoid name conflicts. Words in
package names are usually separated by periods.

 Example: com.example.projectname, org.companyname.module.
6. Interface Names:

 Convention: Use PascalCase.
 Description: Interface names should be written like class names, using PascalCase.

They often represent capabilities or behaviors, and in some cases, they may be
adjectives.

 Example: Runnable, Serializable, Comparable.
7. Enum Names:

 Convention: Use PascalCase for the enum name and ALL_UPPERCASE for the
enum constants.

 Description: The name of the enum itself follows the same convention as classes,
while the constants within the enum are typically named using uppercase letters with
underscores separating words.

 Example: enum DayOfWeek { SUNDAY, MONDAY, TUESDAY }, enum Color {
RED, GREEN, BLUE }.

8. Type Parameter Names:
 Convention: Use single uppercase letters.
 Description: In generic types or methods, type parameters are usually named with

single, uppercase letters. Commonly used letters include T for type, E for element, K
for key, and V for value.

 Example: class Box<T>, interface List<E>, Map<K, V>.

Importance of Following Naming Conventions:

 Consistency: Uniform naming across a codebase helps in understanding and
maintaining the code.

 Readability: Clear and descriptive names make it easier for developers to understand
what a piece of code does.

 Maintainability: Well-named classes, methods, and variables reduce the cognitive
load on developers, making it easier to navigate and modify the code over time.

 Collaboration: When working in teams, consistent naming conventions ensure that
everyone can read and understand each other's code, reducing the chances of errors
and misunderstandings.

OOP with Java 2.11 Introduction to JAVA

2.5 DATA TYPES

In Java, data types specify the size and type of values that can be stored in variables.
Java is a statically typed language, meaning that each variable must be declared with a data
type before it can be used. Java's data types are categorized into two main groups: primitive
data types and non-primitive data types and are shown in Figure 2.3.

Figure 2.3 Classification of Java Data Types

 Primitive Data Types:
 Primitive data types are the most basic data types available in Java. They are

predefined by the language and named by a keyword. Java has eight primitive data
types which are shown in Table 2.2:

 byte:
o Size: 8 bits
o Range: -128 to 127
o Description: Useful for saving memory in large arrays, where the memory savings
are most needed. It can also be used in place of int where the range of values is known to be
small.
o Example: byte b = 100;
 short:
o Size: 16 bits
o Range: -32,768 to 32,767
o Description: A data type that is larger than byte but smaller than int. It's also used to
save memory in large arrays.
o Example: short s = 10000;
 int:
o Size: 32 bits
o Range: -2^31 to 2^31-1 (-2,147,483,648 to 2,147,483,647)
o Description: The default choice for integral values unless there is a reason to use byte
or short. Most commonly used for integer arithmetic.
o Example: int i = 100000;
 long:
o Size: 64 bits
o Range: -2^63 to 2^63-1 (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
o Description: Used when a wider range than int is needed.

Centre for Distance Education 2.12 Acharya Nagarjuna University

o Example: long l = 100000L;
 float:
o Size: 32 bits
o Range: Varies, approximately ±3.40282347E+38F (6-7 significant decimal digits)
o Description: Used for single-precision floating-point numbers. It’s recommended to
use float if you need to save memory in large arrays of floating-point numbers.
o Example: float f = 234.5f;
 double:
o Size: 64 bits
o Range: Varies, approximately ±1.79769313486231570E+308 (15 significant decimal
digits)
o Description: Used for double-precision floating-point numbers and is the default
choice for decimal values.
o Example: double d = 123.456;
 char:
o Size: 16 bits (2 bytes)
o Range: 0 to 65,535 (unsigned)
o Description: Used to store a single character. Java uses Unicode, so it can store any
character from any language.
o Example: char c = 'A';
 boolean:
o Size: Not precisely defined (depends on JVM implementation, but typically 1 bit)
o Range: true or false
o Description: Used for flags that track true/false conditions.
o Example: boolean isJavaFun = true;

Table 2.2 Primitive Data Types in Java
Data Type Default Value Default size Range
byte 0 1 byte or 8 bits -128 to 127
short 0 2 bytes or 16 bits -32,768 to 32,767
int 0 4 bytes or 32 bits 2,147,483,648 to 2,147,483,647

long 0 8 bytes or 64 bits
9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 0.0f 4 bytes or 32 bits 1.4e-045 to 3.4e+038

double 0.0d 8 bytes or 64 bits 4.9e-324 to 1.8e+308

char ‘\u0000’ 2 bytes or 16 bits 0 to 65536
boolean FALSE 1 byte or 2 bytes 0 or 1

 Non-Primitive Data Types
 Non-Primitive data types are not predefined like primitive data types. Instead, they are

created by the programmer and can refer to any object in Java. Reference variables
store the memory address of the object they refer to, rather than the data itself.

 Strings:
o Description: Strings are objects in Java, represented by the String class. They are
used to store sequences of characters.
o Example: String message = "Hello, World!";
 Arrays:
o Description: Arrays are objects that store multiple variables of the same type. The
size of an array is fixed upon creation.

OOP with Java 2.13 Introduction to JAVA

o Example: int[] numbers = {1, 2, 3, 4, 5};
 Classes and Objects:
o Description: Classes define new data types by grouping data and methods that
operate on the data. When you create an instance of a class, it is called an object.
o Example:
java
Copy code
class Car {
 String model;
 int year;
}
Car myCar = new Car();
myCar.model = "Tesla";
myCar.year = 2021;
 Interfaces:
o Description: Interfaces define a contract or a set of methods that a class must
implement. They are used to achieve abstraction and multiple inheritance in Java.
o Example:
java
Copy code
interface Vehicle {
 void start();
}
class Bike implements Vehicle {
 public void start() {
 System.out.println("Bike started");
 }
}

Understanding and properly using data types is fundamental in Java programming.
The correct data type ensures that you use memory efficiently and avoid errors. Primitive
types are straightforward and efficient for basic data handling, while non-primitive types
allow for more complex data structures and operations.

2.6 OPERATORS

Operators in Java are special symbols or keywords used to perform operations on
variables and values. Java provides a rich set of operators to manipulate data and variables,
ranging from simple arithmetic to complex logical operations. These operators are grouped
into several categories based on their functionality.

1. Arithmetic Operators:
 Description: These operators perform basic arithmetic operations such as addition,
subtraction, multiplication, and division.
 Operators and Examples:
o + (Addition): Adds two operands.
Example: int sum = 5 + 3; // sum = 8
o - (Subtraction): Subtracts the right operand from the left operand.
Example: int difference = 5 - 3; // difference = 2

Centre for Distance Education 2.14 Acharya Nagarjuna University

o * (Multiplication): Multiplies two operands.
Example: int product = 5 * 3; // product = 15
o / (Division): Divides the left operand by the right operand.
Example: int quotient = 6 / 3; // quotient = 2
o % (Modulus): Returns the remainder of a division.
Example: int remainder = 7 % 3; // remainder = 1

2. Assignment Operators:
 Description: These operators are used to assign values to variables.
 Operators and Examples:
o = (Assignment): Assigns the value on the right to the variable on the left.
Example: int a = 5;
o += (Add and Assign): Adds the right operand to the left operand and assigns
the result to the left operand.
Example: a += 3; // a = a + 3, so a becomes 8
o -= (Subtract and Assign): Subtracts the right operand from the left operand
and assigns the result to the left operand.
Example: a -= 2; // a = a - 2, so a becomes 6
o *= (Multiply and Assign): Multiplies the left operand by the right operand
and assigns the result to the left operand.
Example: a *= 2; // a = a * 2, so a becomes 12
o /= (Divide and Assign): Divides the left operand by the right operand and
assigns the result to the left operand.
Example: a /= 3; // a = a / 3, so a becomes 4
o %= (Modulus and Assign): Takes the modulus of the left operand by the
right operand and assigns the result to the left operand.
Example: a %= 3; // a = a % 3, so a becomes 1

3. Relational Operators:
 Description: These operators compare two values and return a boolean result (true or
false).
 Operators and Examples:
o == (Equal to): Checks if two values are equal.
Example: boolean isEqual = (5 == 3); // isEqual = false
o != (Not Equal to): Checks if two values are not equal.
Example: boolean isNotEqual = (5 != 3); // isNotEqual = true
o > (Greater than): Checks if the left operand is greater than the right operand.
Example: boolean isGreater = (5 > 3); // isGreater = true
o < (Less than): Checks if the left operand is less than the right operand.
Example: boolean isLess = (5 < 3); // isLess = false
o >= (Greater than or Equal to): Checks if the left operand is greater than or
equal to the right operand.
Example: boolean isGreaterOrEqual = (5 >= 3); // isGreaterOrEqual = true
o <= (Less than or Equal to): Checks if the left operand is less than or equal to
the right operand.
Example: boolean isLessOrEqual = (5 <= 3); // isLessOrEqual = false

4. Logical Operators:
 Description: These operators are used to perform logical operations on boolean
values.

OOP with Java 2.15 Introduction to JAVA

 Operators and Examples:
o && (Logical AND): Returns true if both operands are true.
Example: boolean result = (5 > 3 && 8 > 6); // result = true
o || (Logical OR): Returns true if at least one of the operands is true.
Example: boolean result = (5 > 3 || 8 < 6); // result = true
o ! (Logical NOT): Reverses the logical state of its operand.
Example: boolean result = !(5 > 3); // result = false

5. Unary Operators:
 Description: These operators operate on a single operand.
 Operators and Examples:
o + (Unary Plus): Indicates a positive value (typically optional as numbers are
positive by default).
Example: int positive = +5;
o - (Unary Minus): Negates the value of the operand.
Example: int negative = -5;
o ++ (Increment): Increases the value of the operand by 1.
Example: int a = 5; a++; // a becomes 6
o -- (Decrement): Decreases the value of the operand by 1.
Example: int a = 5; a--; // a becomes 4
o ! (Logical NOT): Inverts the value of a boolean operand.
Example: boolean isTrue = true; isTrue = !isTrue; // isTrue becomes false

6. Bitwise Operators:
 Description: These operators perform bit-level operations on integer types.
 Operators and Examples:
o & (Bitwise AND): Performs a bitwise AND operation on two operands.
Example: int result = 5 & 3; // result = 1 (0101 & 0011 = 0001)
o | (Bitwise OR): Performs a bitwise OR operation on two operands.
Example: int result = 5 | 3; // result = 7 (0101 | 0011 = 0111)
o ^ (Bitwise XOR): Performs a bitwise XOR operation on two operands.
Example: int result = 5 ^ 3; // result = 6 (0101 ^ 0011 = 0110)
o ~ (Bitwise Complement): Inverts all the bits of the operand.
Example: int result = ~5; // result = -6 (bitwise complement of 0101)
o << (Left Shift): Shifts the bits of the left operand to the left by the number of
positions specified by the right operand.
Example: int result = 5 << 2; // result = 20 (0101 << 2 = 10100)
o >> (Right Shift): Shifts the bits of the left operand to the right by the number
of positions specified by the right operand.
Example: int result = 5 >> 2; // result = 1 (0101 >> 2 = 0001)
o >>> (Unsigned Right Shift): Shifts the bits of the left operand to the right by
the number of positions specified by the right operand, filling the leftmost bits with zeros.
Example: int result = 5 >>> 2; // result = 1

7. Ternary Operator:
 Description: The ternary operator is a shorthand for an if-else statement. It has three
operands and is used to evaluate a boolean expression.
 Operator and Example:

Centre for Distance Education 2.16 Acharya Nagarjuna University

o ? : (Ternary): Evaluates a condition and returns one of two values depending
on whether the condition is true or false.
Example: int result = (5 > 3) ? 10 : 20; // result = 10

8. Instanceof Operator:
 Description: The instanceof operator checks whether an object is an instance of a
specific class or subclass.
 Operator and Example:
o instanceof: Returns true if the object is an instance of the specified class or
subclass, otherwise false.
Example: boolean isString = "Hello" instanceof String; // isString = true
Operators are fundamental to performing operations on variables and data in Java. They
allow developers to build complex expressions and perform calculations, comparisons, and
logical operations. Understanding and using operators correctly is essential for writing
effective and efficient Java code.

2.7 INPUT AND OUTPUT STATEMENTS

Java provides various ways to handle input and output (I/O) operations, enabling
interaction between the user and the program. Two of the most commonly used tools for this
purpose are the Scanner class for input and the System.out.println method for output.

 Scanner
The Scanner class in Java is used to read input from various sources, most commonly from
the keyboard (standard input). It is a part of the java.util package, so you need to import it
before using it.
 Importing the Scanner Class:
import java.util.Scanner;
 Creating a Scanner Object: To read input from the keyboard, you need to create a
Scanner object that uses System.in as the input stream.
Scanner scanner = new Scanner(System.in);
 Reading Different Types of Input:
o Reading a String:
System.out.print("Enter your name: ");
String name = scanner.nextLine(); // Reads a line of text
System.out.println("Hello, " + name + "!");
o Reading an Integer:
System.out.print("Enter your age: ");
int age = scanner.nextInt(); // Reads an integer
System.out.println("You are " + age + " years old.");
o Reading a Double:
System.out.print("Enter your salary: ");
double salary = scanner.nextDouble(); // Reads a double value
System.out.println("Your salary is " + salary);
o Reading a Single Word:
System.out.print("Enter your first name: ");
String firstName = scanner.next(); // Reads a single word (until a space is encountered)
System.out.println("First Name: " + firstName);
 Key Points:
o The nextLine() method reads an entire line of input, including spaces.

OOP with Java 2.17 Introduction to JAVA

o The nextInt(), nextDouble(), etc., methods read specific types of input and
automatically convert them to the appropriate data type.
o The next() method reads input until a space or newline is encountered, making
it useful for single-word inputs.

Output: System.out.println
The System.out.println method is used to print information to the console. It's one of the most
frequently used methods in Java for outputting text, variables, and results of operations.
 Syntax:
System.out.println(expression);
Where expression can be a string, a variable, or a combination of strings and variables.
 Examples:
System.out.println("Hello, World!"); // Prints: Hello, World!
System.out.println(100); // Prints: 100
System.out.println("Total: " + 50); // Prints: Total: 50
 Key Points:
o The println method prints the specified message and then moves the cursor to
the next line.
o There is also a System.out.print method that prints the message without
moving to the next line, allowing multiple outputs to be printed on the same line.

2.8 COMMAND LINE ARGUMENTS

Command line arguments in Java are the inputs that are passed to a Java program
during its execution from the command line or terminal. These arguments are typically
passed as strings, and they are accessible within the main method of the Java program.
Here’s a basic overview of how command line arguments work in Java:
 Accessing Command Line Arguments
Command line arguments in Java are stored in the String array that is passed to the main
method of the class. The main method signature looks like this:
public static void main(String[] args) {
 // Code goes here
}
Where args is an array of String objects that contains the arguments passed from the
command line.
 Example: Simple Java Program with Command Line Arguments
public class CommandLineExample {
 public static void main(String[] args) {
 // Check if arguments are passed
 if (args.length > 0) {
 System.out.println("Command line arguments are:");
 for (int i = 0; i < args.length; i++) {
 System.out.println("Argument " + i + ": " + args[i]);
 }
 } else {
 System.out.println("No command line arguments found.");
 }
 }
}

Centre for Distance Education 2.18 Acharya Nagarjuna University

 Running the Program
To run this program and pass command line arguments, you would use the following
command in the terminal or command prompt:
java CommandLineExample arg1 arg2 arg3
Where arg1, arg2, and arg3 are the command line arguments being passed to the program.
The program will output:

Command line arguments are:
Argument 0: arg1
Argument 1: arg2
Argument 2: arg3

Important Points
 Indexing: The command line arguments are indexed starting from 0. So args[0] is the
first argument, args[1] is the second, and so on.
 Argument Count: You can determine the number of arguments by checking
args.length.
 Data Types: Command line arguments are always passed as strings. If you need them
in another data type (e.g., int), you need to parse the string to that type using methods like
Integer.parseInt(args[0]).

2.9 SUMMARY

Java is a widely used, object-oriented programming language designed for portability,
security, and high performance. It operates on the Java Virtual Machine (JVM), which allows
Java programs to run on any platform without modification, making it platform independent.

Java features a rich set of data types, including primitive types like int, float, char, and

boolean, as well as reference types like arrays and objects. The language offers a variety of
operators, such as arithmetic, relational, and logical operators, to perform operations on
variables and data. Command line arguments in Java allow users to pass input to programs
via the terminal, accessible through the String[] args parameter in the main method.

Additionally, the Scanner class provides a way to take user input during runtime,

while the System.out.println method is commonly used for outputting data to the console,
making it easy to display results or messages. Java's combination of simplicity, portability,
and powerful features has made it a popular choice for developing everything from mobile
applications to enterprise-level systems.

2.10 TECHNICAL TERMS

 JVM
 Data Type
 Scanner
 Println
 Boolean
 Platform Independence
 Portable
 Command Line Argument

OOP with Java 2.19 Introduction to JAVA

2.11 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the structure and significance of data types in Java programming.
2. Describe the architecture and functionality of the Java Virtual Machine (JVM).
3. Analyze the key features of Java that make it a robust and versatile programming

language
4. Discuss the different types of operators in Java and their role in program development.
5. Compare and contrast command line arguments and the Scanner class for input

handling in Java.

 Short questions:

1. List and briefly describe three key features of Java.
2. What is the purpose of arithmetic operators in Java?
3. How does the Java Virtual Machine (JVM) contribute to Java's platform independence?
4. What is the role of data types in Java?

2.12 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021), McGraw-
Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly Media
3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley Professional
4. "Object-Oriented Analysis and Design with Applications" by Grady Booch, 3rd

Edition (2007), Addison-Wesley Professional
5. "Thinking in Java" by Bruce Eckel,4th Edition (2006), Prentice Hall

 Dr. KAMPA LAVANYA

LESSON- 3

CONDITIONAL STATEMENTS

OBJECTIVES

By the end of this chapter, you should be able to:

 make decisions within a program based on different conditions.
 control the flow of execution by branching the program into different paths.
 program to adapt its behavior based on real-time inputs or data.
 code readability and maintainability by clearly defining different execution paths.
 complex logical operations by combining multiple conditions using logical operators.

STRUCTURE

3.1 Introduction
3.2 Introduction to Conditional Statements
3.3 Basic Conditional Statements
3.4 Advanced Conditional Statements
3.5 Control Flow Enhancements
3.6 Common Use Cases
3.7 Best Practices
3.8 Summary
3.9 Technical Terms
3.10 Self-Assessment Questions
3.11 Suggested Readings

3.1. INTRODUCTION

Conditional statements in Java, such as if, else if, else, and switch, are used to control
the flow of a program based on different conditions. These statements allow a program to
execute specific blocks of code only when certain conditions are met, enabling it to make
decisions and respond dynamically to various inputs or states. This is crucial for implementing
logic that depends on runtime conditions, such as user inputs, data values, or computational
results. By using conditional statements, developers can create more flexible and interactive
applications that adapt their behavior based on real-time conditions.This chapter introduces
Java, covers the fundamental features of java, parts of Java, naming conventions, data types,
operators, input and output statements, and command line arguments.

3.2 INTRODUCTION TO CONDITIONAL STATEMENTS

Conditional statements are fundamental constructs in programming languages,
including Java, that allow a program to make decisions based on certain conditions. They
enable a program to execute specific blocks of code only when certain criteria are met, thus
providing a way to branch the flow of execution.

In Java, conditional statements include if, else if, else, switch, and ternary operators.
These statements evaluate expressions that return boolean values (true or false) to determine
which code blocks to execute. The basic purpose of conditional statements is to enable
decision-making in code, allowing the program to respond to different inputs or states.

Centre for Distance Education 3.2 Acharya Nagarjuna University

Importance in Programming

1. Decision Making: Conditional statements enable a program to make decisions and choose

different execution paths based on various conditions. This decision-making capability is
essential for implementing logic that reacts to user inputs, data values, or other dynamic
factors.

2. Control Flow Management: By controlling the flow of execution, conditional statements
help manage the sequence of operations in a program. This allows developers to
implement complex logic and ensure that the program performs the correct actions under
different scenarios.

3. Dynamic Behavior: Conditional statements allow a program to adapt its behavior in real-
time. For example, they can enable different features based on user roles, manage different
outcomes based on data values, or adjust functionality depending on system states.

4. Error Handling: They are used to handle errors or exceptional cases gracefully by defining
specific actions when certain conditions are encountered, thus improving the robustness of
the program.

5. Code Readability and Maintenance: Well-structured conditional statements enhance the
readability of code by clearly defining how different conditions affect the execution flow.
This makes it easier to understand, maintain, and debug the code.

6. Performance Optimization: By using conditional statements, developers can optimize
performance by avoiding unnecessary computations or operations. For example, a program
might skip certain processing steps if specific conditions are met.

Overall, conditional statements are a crucial part of programming that help create

flexible, interactive, and efficient applications by allowing the code to make decisions and
respond to different situations dynamically.

3.3 BASIC CONDITIONAL STATEMENTS IN JAVA

Java provides several basic conditional statements to control the flow of execution
based on different conditions. These statements include the if, else if, else, and switch
statements. Here’s an overview of each:

 if Statement
The if statement is used to execute a block of code only if a specified condition evaluates to
true.
Syntax:
if (condition) {
 // Code to be executed if the condition is true
}

OOP with Java 3.3 Conditional Statements

Flowchart:

Fig 3.1. Flow Chart of if Statement

Example:
int age = 18;
if (age >= 18) {
 System.out.println("You are an adult.");
}

In this example, the message "You are an adult." will be printed only if the value of age is 18
or greater.

 else Statement
The else statement follows an if statement and provides an alternative block of code to
execute when the if condition evaluates to false.
Syntax:
if (condition) {
 // Code to be executed if the condition is true
} else {
 // Code to be executed if the condition is false
}
Flowchart

Centre for Distance Education 3.4 Acharya Nagarjuna University

Fig 3.2. Flow Chart of if-else Statement

Example:
int age = 16;
if (age >= 18) {
 System.out.println("You are an adult.");
} else {
 System.out.println("You are not an adult.");
}

Here, the message "You are not an adult." will be printed since the age is less than 18.

 else if Statement
The else if statement allows checking multiple conditions sequentially. It is used when you
need to check more than two conditions.
Syntax:
if (condition1) {
 // Code to be executed if condition1 is true
} else if (condition2) {
 // Code to be executed if condition2 is true
} else {
 // Code to be executed if none of the above conditions are true
}

OOP with Java 3.5 Conditional Statements

Flowchart:

Fig 3.3. Flow Chart of else-if ladder Statement

Example:
int score = 85;
if (score >= 90) {
 System.out.println("Grade: A");
} else if (score >= 80) {
 System.out.println("Grade: B");
} else if (score >= 70) {
 System.out.println("Grade: C");
} else {
 System.out.println("Grade: F");
}
In this example, the program prints "Grade: B" because the score is between 80 and 89.

 switch Statement
The switch statement allows for selecting one of many code blocks to execute based on the
value of an expression. It is generally used when a single variable needs to be compared
against multiple possible values.
Syntax:
switch (expression) {
 case value1:
 // Code to be executed if expression equals value1
 break;
 case value2:
 // Code to be executed if expression equals value2

Centre for Distance Education 3.6 Acharya Nagarjuna University

 break;
 // More cases as needed
 default:
 // Code to be executed if no case matches
}

Flowchart:

Fig 3.4 Flow Chart of else-if ladder Statement

Example:
int day = 3;
switch (day) {
 case 1:
 System.out.println("Monday");
 break;
 case 2:
 System.out.println("Tuesday");
 break;

OOP with Java 3.7 Conditional Statements

 case 3:
 System.out.println("Wednesday");
 break;
 default:
 System.out.println("Invalid day");
}

Here, "Wednesday" will be printed because the value of day is 3.

These basic conditional statements provide the foundational building blocks for
implementing decision-making logic in Java programs. They enable developers to control the
flow of execution based on varying conditions, making their applications more interactive
and responsive.

3.4 ADVANCED CONDITIONAL STATEMENTS

In addition to basic conditional statements, Java provides more advanced features to
handle complex decision-making scenarios. These include nested if statements, combining
conditions, the ternary operator, and enhanced switch statements. Here's a detailed look at
each:

 Nested if Statements
Nested if statements are used when you need to make a decision within another decision. This
allows for more granular control over execution based on multiple layers of conditions.
Syntax:
if (condition1) {
 if (condition2) {
 // Code to be executed if both condition1 and condition2 are true
 } else {
 // Code to be executed if condition1 is true but condition2 is false
 }
} else {
 // Code to be executed if condition1 is false
}
Example:
int age = 20;
boolean hasTicket = true;

if (age >= 18) {
 if (hasTicket) {
 System.out.println("You can enter the movie.");
 } else {
 System.out.println("You need a ticket to enter.");
 }
} else {
 System.out.println("You must be at least 18 years old to enter.");
}
In this example, the program checks both the age and whether the person has a ticket,
providing a message based on these conditions.

Centre for Distance Education 3.8 Acharya Nagarjuna University

 Combining Conditions
Combining conditions allows for more complex decision-making by using logical operators
such as && (logical AND), || (logical OR), and ! (logical NOT).
Syntax:
if (condition1 && condition2) {
 // Code to be executed if both conditions are true
}

if (condition1 || condition2) {
 // Code to be executed if at least one condition is true
}

if (!condition) {
 // Code to be executed if the condition is false
}
Example:
int temperature = 75;
boolean isRaining = false;

if (temperature > 70 && !isRaining) {
 System.out.println("It's a nice day outside.");
}

if (temperature < 32 || isRaining) {
 System.out.println("Prepare for cold or wet weather.");
}

Here, the program checks multiple conditions to provide appropriate messages based on the
temperature and weather conditions.

3.5 CONTROL FLOW ENHANCEMENTS

Java offers several control flow enhancements that improve the way decisions and
branching are handled within a program. These enhancements include the ternary operator,
assertions, and advanced features in the switch statement. Here's a detailed look at each
enhancement:

 Ternary Operator
The ternary operator (? :) is a shorthand for simple if-else statements, often used for concise
assignment or return statements. It can be especially useful for reducing verbosity in
conditional expressions.
Syntax:
result = (condition) ? valueIfTrue : valueIfFalse;
Example:
int score = 85;
String grade = (score >= 90) ? "A" : (score >= 80) ? "B" : "C";
System.out.println("Grade: " + grade);

Here, the ternary operator is used to assign a grade based on the score. It's more concise than
using nested if-else statements.

OOP with Java 3.9 Conditional Statements

 Assertions
Assertions are a debugging tool used to test assumptions made in the code. They allow
developers to specify conditions that should be true during runtime. If an assertion fails, it
throws an AssertionError, which can be useful for catching logical errors during
development.
Syntax:
assert condition : message;
Example:
int age = 25;
assert age >= 18 : "Age must be 18 or older";
To enable assertions, you must run the Java Virtual Machine (JVM) with the -ea flag (e.g.,
java -ea MyClass). Assertions are typically used during development and testing rather than
in production code.

 switch Expression (Java 12+)
Introduced in Java 12, the switch expression enhances the traditional switch statement by
allowing it to return values and use a more concise syntax. It also provides improved
readability and reduces boilerplate code.
Syntax:
result = switch (expression) {
 case value1 -> result1;
 case value2 -> result2;
 default -> defaultResult;
};
Example:
int day = 3;
String dayName = switch (day) {
 case 1 -> "Monday";
 case 2 -> "Tuesday";
 case 3 -> "Wednesday";
 case 4 -> "Thursday";
 case 5 -> "Friday";
 case 6 -> "Saturday";
 case 7 -> "Sunday";
 default -> "Invalid day";
};
System.out.println(dayName);

In this example, the switch expression returns the name of the day based on the value of day,
with a default case for invalid days.

These control flow enhancements provide more flexibility, readability, and efficiency
in handling decision-making and branching in Java programs. They help developers write
cleaner and more maintainable code while leveraging the latest language features.

3.6 COMMON USE CASES FOR CONDITIONAL STATEMENTS

Conditional statements are versatile tools in Java programming, used to handle a wide range
of scenarios. Here are some common use cases:

Centre for Distance Education 3.10 Acharya Nagarjuna University

 Validating User Input
Conditional statements are often used to check and validate user input, ensuring that data
meets certain criteria before processing.
Example:
import java.util.Scanner;
public class UserInputValidation {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter your age: ");
 int age = scanner.nextInt();

 if (age < 0) {
 System.out.println("Age cannot be negative.");
 } else if (age < 18) {
 System.out.println("You are a minor.");
 } else {
 System.out.println("You are an adult.");
 }
 }
}
In this example, the program validates the user's age and provides appropriate messages
based on the input.

 Implementing Game Logic
Conditional statements are used to create interactive and dynamic game behavior, such as
checking win conditions, handling player actions, and managing game states.
Example:
public class Game {
 public static void main(String[] args) {
 int playerScore = 95;
 int targetScore = 100;

 if (playerScore >= targetScore) {
 System.out.println("Congratulations! You win!");
 } else {
 System.out.println("Keep trying! Your score is " + playerScore);
 }
 }
}
This example checks if the player's score meets or exceeds the target score to determine if
they win.

 Handling Different Application States
Conditional statements help manage different states of an application, such as loading,
running, or error states, by executing different code blocks based on the current state.
Example:
public class ApplicationState {
 public static void main(String[] args) {
 String state = "loading";
 switch (state) {

OOP with Java 3.11 Conditional Statements

 case "loading":
 System.out.println("Application is loading...");
 break;
 case "running":
 System.out.println("Application is running.");
 break;
 case "error":
 System.out.println("An error occurred.");
 break;
 default:
 System.out.println("Unknown state.");
 }
 }
}
This example uses a switch statement to handle different application states.

 Error Handling and Exception Management
Conditional statements are used to handle different error conditions or exceptional cases
gracefully, allowing the program to continue running or provide useful feedback.
Example:
public class ErrorHandling {
 public static void main(String[] args) {
 int number = -10;

 if (number < 0) {
 System.out.println("Error: Number cannot be negative.");
 } else {
 System.out.println("Number is valid: " + number);
 }
 }
}
Here, the program checks for negative numbers and provides an error message if the
condition is met.

 Control Flow in Loops
Conditional statements inside loops allow for fine-grained control of the loop's execution,
such as breaking out of a loop, skipping iterations, or handling specific cases.
Example:
for (int i = 0; i < 10; i++) {
 if (i % 2 == 0) {
 System.out.println(i + " is even.");
 } else {
 System.out.println(i + " is odd.");
 }
}
In this example, the if-else statement determines whether each number in the loop is even or
odd.

Centre for Distance Education 3.12 Acharya Nagarjuna University

 Calculating Discounts or Pricing
Conditional statements are used to apply different pricing or discounts based on customer
eligibility, purchase amounts, or other criteria.
Example:
public class Pricing {
 public static void main(String[] args) {
 double purchaseAmount = 150.00;
 double discount;

 if (purchaseAmount >= 100) {
 discount = 0.10; // 10% discount
 } else {
 discount = 0.05; // 5% discount
 }

 double finalPrice = purchaseAmount * (1 - discount);
 System.out.println("Final price after discount: $" + finalPrice);
 }
}
This example calculates a discount based on the purchase amount and applies it to the final
price.

 User Authentication and Authorization
Conditional statements help manage user access levels, permissions, and authentication
processes in applications.
Example:
public class UserAuthentication {
 public static void main(String[] args) {
 String userRole = "admin";

 if (userRole.equals("admin")) {
 System.out.println("Access granted to admin panel.");
 } else if (userRole.equals("user")) {
 System.out.println("Access granted to user dashboard.");
 } else {
 System.out.println("Access denied.");
 }
 }
}
Here, the program checks the user's role to determine access rights.
These use cases illustrate how conditional statements are crucial for implementing logic,
managing application flow, and handling various scenarios in Java programs.

3.7 BEST PRACTICES

Effective use of conditional statements is essential for writing clean, efficient, and
maintainable code. Here are some best practices to follow:

 Avoid Deep Nesting
Deeply nested conditional statements can make code difficult to read and maintain. To
improve readability, try to minimize nesting levels by:

OOP with Java 3.13 Conditional Statements

 Using early returns or breaks to exit from a method or loop as soon as a condition is
met.

 Refactoring complex conditions into separate methods that return boolean values.
Example:
// Avoid deep nesting
if (condition1) {
 if (condition2) {
 if (condition3) {
 // Do something
 }
 }
}

// Refactored code
if (!condition1) return;
if (!condition2) return;
if (condition3) {
 // Do something
}

 Use Descriptive Conditionals
Ensure that the conditions in your if, else if, and switch statements are clear and descriptive.
Use meaningful variable names and consider using helper methods to encapsulate complex
conditions.
Example:
// Descriptive conditional
if (user.isEligibleForDiscount()) {
 applyDiscount();
}

// Less descriptive
if (user.getAge() > 60 && user.hasLoyaltyCard()) {
 applyDiscount();
}

 Prefer switch for Multiple Conditions
When dealing with a single variable that can have multiple distinct values, using a switch
statement can be clearer and more efficient than multiple if-else statements.
Example:
// Using switch
switch (dayOfWeek) {
 case MONDAY:
 // Handle Monday
 break;
 case TUESDAY:
 // Handle Tuesday
 break;
 default:
 // Handle other cases
}

Centre for Distance Education 3.14 Acharya Nagarjuna University

// Using if-else (less preferred)
if (dayOfWeek == MONDAY) {
 // Handle Monday
} else if (dayOfWeek == TUESDAY) {
 // Handle Tuesday
} else {
 // Handle other cases
}

 Leverage Ternary Operator for Simple Conditions
Use the ternary operator for simple if-else assignments to make the code more concise and
readable. Avoid using it for complex conditions or multiple statements.
Example:
// Using ternary operator
int max = (a > b) ? a : b;

// Avoid complex ternary operations
String result = (a > b) ? (a > c ? "a" : "c") : (b > c ? "b" : "c");
5. Handle All Possible Cases in switch Statements
Ensure that all possible cases are handled in switch statements, including a default case to
manage unexpected values. This helps prevent bugs and ensures robustness.
Example:
java
Copy code
switch (status) {
 case ACTIVE:
 // Handle active status
 break;
 case INACTIVE:
 // Handle inactive status
 break;
 default:
 // Handle unexpected status
 System.out.println("Unknown status");
}

 Use Pattern Matching and switch Expressions (Java 12+ and Java 17+)
Take advantage of advanced features like switch expressions and pattern matching to write
more concise and expressive code.
Example with switch expression:
String dayName = switch (dayOfWeek) {
 case MONDAY -> "Monday";
 case TUESDAY -> "Tuesday";
 case WEDNESDAY -> "Wednesday";
 default -> "Unknown day";
};
Example with pattern matching:
Object obj = "Hello";
String result = switch (obj) {
 case String s && s.length() > 5 -> "Long string";

OOP with Java 3.15 Conditional Statements

 case String s -> "Short string";
 default -> "Not a string";
};

Avoid Overusing Conditional Logic
While conditional logic is powerful, overusing it can lead to complex and hard-to-maintain
code. Consider using design patterns, polymorphism, or strategy patterns to handle complex
logic in a more manageable way.
Example: Instead of using a lot of if-else statements to handle different behaviors, consider
using the Strategy pattern to encapsulate these behaviors.

 Document Complex Conditions
When using complex conditions or nested statements, add comments to explain the logic.
This will help others (and yourself) understand the intent and functionality of the code.
Example:
java
Copy code
// Check if user is eligible for a special discount
if (user.isMember() && user.hasMadePurchaseInLastMonth()) {
 applySpecialDiscount();
}
By following these best practices, you can write conditional logic that is more readable,
maintainable, and effective, improving the overall quality of your Java code.

3.8 SUMMARY

Conditional statements in Java are essential for directing the flow of a program based
on varying conditions. These include the if, else if, and else statements, which allow
execution of specific code blocks based on whether conditions evaluate to true or false. The
switch statement provides a streamlined approach for handling multiple discrete values of a
variable. Advanced features like the ternary operator, pattern matching, and enhanced switch
expressions further enhance flexibility and readability. By using these constructs, Java
developers can implement dynamic decision-making and control the program’s execution
path effectively.

3.9 TECHNICAL TERMS

 If
 Else
 Switch
 Ternary operator
 Pattern matching
 Condition
 Boolean expression

3.10 SELF ASSESSMENT QUESTIONS

 Essay questions:

1. Explain how you would refactor deeply nested if statements to improve readability
and maintainability. Provide a code example.

Centre for Distance Education 3.16 Acharya Nagarjuna University

2. Describe the advantages of using switch expressions introduced in Java 12 over
traditional switch statements. Provide an example.

3. Discuss the differences between using the ternary operator and if-else statements for
conditional logic. When should each be used?

4. How does pattern matching in switch statements enhance code readability and
functionality? Provide an example of pattern matching in use.

 Short questions:

1. What is the purpose of the else statement in Java?
2. How do you use the ternary operator in Java?
3. What is the difference between if-else and switch statements?
4. How does the default case work in a switch statement?

3. 11 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021), McGraw-
Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly Media
3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley Professional

 Dr. KAMPA LAVANYA

LESSON- 4

LOOP STATEMENTS

OBJECTIVES

By the end of this chapter, you should be able to:

 execute a block of code multiple times, reducing redundancy and ensuring that
repetitive tasks are automated.

 systematically access each element in a collection or array, enabling operations such
as processing, searching, or modifying data.

 dynamically control the flow of execution based on conditions, allowing for flexible
and adaptive programming.

 handle large datasets or perform calculations repeatedly without manually duplicating
code.

 manage and update counters, such as for indexing elements, tracking iterations, or
controlling loops.

 These objectives highlight the importance of loop statements in Java for creating
efficient, readable, and maintainable code.

STRUCTURE

4.1 Introduction
4.2 Basic Loop Statements
4.3 Nested Loops
4.4 Loop Control Statements
4.5 Searching and Sorting with Loops
4.6 Best Practices
4.7 Summary
4.8 Technical Terms
4.9 Self-Assessment Questions
4.10 Suggested Readings

4.1 INTRODUCTION

Loop statements in Java are fundamental constructs that enable developers to execute a
block of code repeatedly based on specified conditions. These control structures are essential
for automating repetitive tasks, processing collections of data, and managing dynamic
execution flows. Java provides several types of loops, including for, while, and do-while, each
designed to handle different looping scenarios. By leveraging loops, programmers can
efficiently iterate over arrays and collections, implement complex algorithms, and ensure that
their code is both concise and maintainable. Understanding how to effectively use these loops is
crucial for optimizing performance and achieving flexible and scalable software solutions.

4.2 BASIC LOOP STATEMENTS

In Java, basic loop statements are used to execute a block of code repeatedly based on
certain conditions. The primary types of loop statements are for, while, and do-while. Here’s a
brief overview of each:

Centre for Distance Education 4.2 Acharya Nagarjuna University

 for Loop
Definition: The for loop is used when the number of iterations is known beforehand. It consists
of three parts: initialization, condition, and update.
Syntax:
for (initialization; condition; update) {
 // Code to be executed
}
Flowchart:

Fig 4.1. Flowchart of For-loop Statement

Example:
// Print numbers from 1 to 5
for (int i = 1; i <= 5; i++) {
 System.out.println(i);
}
Components:
 Initialization: Sets up the loop control variable.
 Condition: The loop continues as long as this condition is true.
 Update: Modifies the loop control variable after each iteration.
 while Loop
Definition: The while loop repeatedly executes a block of code as long as a specified condition
is true. It is used when the number of iterations is not known in advance.
Syntax:
while (condition) {
 // Code to be executed
}
Flowchart:

Fig 4.2 Flowchart of While-loop Statement

OOP with Java 4.3 Control Statements

Example:
// Print numbers from 1 to 5
int i = 1;
while (i <= 5) {
 System.out.println(i);
 i++;
}
Components:
 Condition: The loop continues as long as this condition remains true.
 Code Block: Executes each time the condition evaluates to true.
 Update: Typically occurs within the code block to eventually terminate the loop.

 do-while Loop
Definition: The do-while loop is similar to the while loop but guarantees that the code block
will execute at least once before the condition is tested.
Syntax:
do {
 // Code to be executed
} while (condition);
Example:
// Print numbers from 1 to 5
int i = 1;
do {
 System.out.println(i);
 i++;
} while (i <= 5);
Components:

 Code Block: Executes first before the condition is tested.
 Condition: The loop continues as long as this condition is true.

Summary
 for Loop: Ideal for a known number of iterations.
 while Loop: Best for when the number of iterations is uncertain.
 do-while Loop: Ensures the code block executes at least once.

Understanding and using these basic loop constructs allows developers to handle repetitive
tasks efficiently and control program flow effectively.

4.3 NESTED LOOPS

Thes loops are in Java refer to the practice of placing one loop inside another loop.
This structure is used to perform complex iterations, such as iterating over multi-dimensional
arrays or generating patterns. Each loop inside is known as a "nested" loop, and it can be any
type of loop (for, while, or do-while).

Syntax for Nested Loops:
Copy code
for (initialization; condition; update) {
 for (initialization; condition; update) {
 // Inner loop code
 }
 // Outer loop code

Centre for Distance Education 4.4 Acharya Nagarjuna University

}
Examples
1. Printing a Multiplication Table
Example:
// Print a multiplication table from 1 to 5
for (int i = 1; i <= 5; i++) {
 for (int j = 1; j <= 5; j++) {
 System.out.print(i * j + "\t"); // Print the product
 }
 System.out.println(); // Move to the next line
}
In this example:
 The outer loop (i loop) iterates through the rows.
 The inner loop (j loop) iterates through the columns, printing the product of i and j.

2. Iterating Over a 2D Array
Example:
// Define a 2D array
int[][] matrix = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
};

// Print the 2D array
for (int i = 0; i < matrix.length; i++) {
 for (int j = 0; j < matrix[i].length; j++) {
 System.out.print(matrix[i][j] + " ");
 }
 System.out.println(); // Move to the next line
}
In this example:
 The outer loop iterates over rows of the 2D array.
 The inner loop iterates over columns of each row.

Common Use Cases
1. Generating Patterns: Nested loops are often used to generate patterns or shapes, such
as stars or grids.
// Print a square pattern of stars
for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5; j++) {
 System.out.print("* ");
 }
 System.out.println();
}
2. Matrix Operations: Performing operations on matrices, such as addition, subtraction,
or multiplication, often involves nested loops.
3. Complex Data Structures: Traversing multi-dimensional data structures or grids.

OOP with Java 4.5 Control Statements

Performance Considerations
 Time Complexity: The time complexity of nested loops is multiplicative. For
example, two nested loops each running n times have a time complexity of O(n^2).
 Efficiency: Deeply nested loops can lead to performance issues, so it is important to
ensure that they are necessary and optimized.
Nested loops are a powerful feature in Java that enable complex iteration and data processing.
By understanding their structure and applications, developers can effectively handle multi-
dimensional data and create intricate patterns or algorithms.

4.4 LOOP CONTROL STATEMENTS

Loop control statements in Java are used to alter the flow of execution within loops,
providing more control over how and when the loops should terminate or continue. The
primary loop control statements are break, continue, and return. Here's a detailed look at
each:

 break Statement
Purpose: The break statement exits the nearest enclosing loop (for, while, or do-while) and
transfers control to the statement immediately following the loop.
Syntax:
break;
Example:
// Find the first number greater than 10 in an array
int[] numbers = {1, 5, 8, 12, 15};
for (int num : numbers) {
 if (num > 10) {
 System.out.println("First number greater than 10: " + num);
 break; // Exit the loop
 }
}
The break statement exits the for loop as soon as a number greater than 10 is found.

 continue Statement
The continue statement skips the current iteration of the nearest enclosing loop and proceeds
to the next iteration of the loop.
Syntax:
continue;
Example:
// Print numbers from 1 to 10, skipping multiples of 3
for (int i = 1; i <= 10; i++) {
 if (i % 3 == 0) {
 continue; // Skip the current iteration
 }
 System.out.println(i);
}
The continue statement skips the printing of numbers that are multiples of 3.

 return Statement
The return statement exits the current method and optionally returns a value. When used
within loops, it also exits the method containing the loop.
Syntax:

Centre for Distance Education 4.6 Acharya Nagarjuna University

return; // To exit the method without returning a value
return value; // To exit the method and return a value
Example:
// Method to find if a number is in an array
public boolean contains(int[] array, int target) {
 for (int num : array) {
 if (num == target) {
 return true; // Exit the method and return true
 }
 }
 return false; // Return false if target is not found
}
The return statement exits the method as soon as the target value is found in the array,
returning true.

Summary

 break: Exits the loop and transfers control to the statement following the loop.
 continue: Skips the rest of the code in the current iteration and proceeds to the next

iteration.
 return: Exits the method and optionally returns a value, which can also affect loop

execution when used within loops.
These loop control statements provide the flexibility to manage loop execution flow, handle
specific conditions, and control how and when loops terminate or skip iterations.

4.5 SEARCHING AND SORTING WITH LOOPS

Searching and sorting are fundamental operations in programming, and loops play a
crucial role in implementing these algorithms. Here’s a guide to basic searching and sorting
techniques using loops in Java:
 Searching Algorithms
 Linear Search

Linear search is a simple algorithm that checks each element in a list or array sequentially

until the desired element is found or the end of the list is reached.

Algorithm:
 Iterate through each element of the array.
 Compare the current element with the target value.
 If a match is found, return the index or the element.
 If the end of the array is reached without finding the target, return a failure indicator
(e.g., -1).
Example:
public class LinearSearch {
 public static int linearSearch(int[] array, int target) {
 for (int i = 0; i < array.length; i++) {
 if (array[i] == target) {
 return i; // Return index if target is found
 }
 }
 return -1; // Return -1 if target is not found

OOP with Java 4.7 Control Statements

 }

 public static void main(String[] args) {
 int[] numbers = {3, 5, 7, 9, 11};
 int index = linearSearch(numbers, 7);
 System.out.println("Index of 7: " + index);
 }
}
 Sorting Algorithms
 Bubble Sort
Bubble sort is a straightforward sorting algorithm that repeatedly steps through the list,

compares adjacent elements, and swaps them if they are in the wrong order. The process is
repeated until the list is sorted.

Algorithm:

 Iterate through the array.
 Compare each pair of adjacent elements.
 Swap them if they are in the wrong order.
 Repeat the process until no swaps are needed.

Example:
public class BubbleSort {
 public static void bubbleSort(int[] array) {
 int n = array.length;
 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - 1 - i; j++) {
 if (array[j] > array[j + 1]) {
 // Swap elements
 int temp = array[j];
 array[j] = array[j + 1];
 array[j + 1] = temp;
 }
 }
 }
 }

 public static void main(String[] args) {
 int[] numbers = {64, 34, 25, 12, 22};
 bubbleSort(numbers);
 System.out.println("Sorted array: " + Arrays.toString(numbers));
 }
}
 Selection Sort
Selection sort is a simple sorting algorithm that divides the array into two parts: a sorted

part and an unsorted part. It repeatedly selects the smallest (or largest) element from the
unsorted part and moves it to the end of the sorted part.
Algorithm:
 Iterate through the array.
 Find the minimum (or maximum) element in the unsorted part.
 Swap it with the first unsorted element.
 Move the boundary between the sorted and unsorted parts.

Centre for Distance Education 4.8 Acharya Nagarjuna University

Example:
public class SelectionSort {
 public static void selectionSort(int[] array) {
 int n = array.length;
 for (int i = 0; i < n - 1; i++) {
 int minIndex = i;
 for (int j = i + 1; j < n; j++) {
 if (array[j] < array[minIndex]) {
 minIndex = j;
 }
 }
 // Swap the found minimum element with the first unsorted element
 int temp = array[minIndex];
 array[minIndex] = array[i];
 array[i] = temp;
 }
 }

 public static void main(String[] args) {
 int[] numbers = {64, 34, 25, 12, 22};
 selectionSort(numbers);
 System.out.println("Sorted array: " + Arrays.toString(numbers));
 }
}

 Insertion Sort
Insertion sort builds the final sorted array one item at a time. It takes each element from the
input and inserts it into its correct position within the already sorted portion of the array.
Algorithm:

 Iterate through the array from the second element to the last.
 For each element, compare it to the elements in the sorted portion and insert it into its

correct position.
Example:
public class InsertionSort {
 public static void insertionSort(int[] array) {
 int n = array.length;
 for (int i = 1; i < n; i++) {
 int key = array[i];
 int j = i - 1;
 while (j >= 0 && array[j] > key) {
 array[j + 1] = array[j];
 j--;
 }
 array[j + 1] = key;
 }
 }

 public static void main(String[] args) {
 int[] numbers = {64, 34, 25, 12, 22};
 insertionSort(numbers);

OOP with Java 4.9 Control Statements

 System.out.println("Sorted array: " + Arrays.toString(numbers));
 }
}

Summary

 Linear Search: Simple and effective for small datasets or unsorted arrays.
 Bubble Sort: Easy to implement but inefficient for large datasets due to its O(n²)

complexity.
 Selection Sort: Straightforward but also has O(n²) complexity; useful for small arrays.
 Insertion Sort: More efficient than bubble and selection sorts for small or partially

sorted arrays.

Table 4.1 Differences between linear and binary search

Line Linear search B Binary search

 In linear search, input data doesn’t need
to be sorted .

 Whereas, in binary search, input
data has to be sorted according to
the order.

 It is also referred as sequential search.
 It is also referred to as half-interval

search.

 The time complexity of the linear
search is O(n)

 The time complexity of the binary
search is
0 (logn)

 Multi-dimensional array is used for
linear search.

 A single dimensional array is used
for linear search.

 It operates equality comparisons
 Binary search operates ordering

comparisons
 Linear search is less complex and

involves a slow process
 Binary search is more complex and

has a fast process

These algorithms illustrate the use of loops to perform common operations and help in
understanding how basic data manipulation tasks are carried out in programming.

4.6 BEST PRACTICES

When working with loop statements in Java, following best practices can help ensure
that your code is efficient, readable, and maintainable. Here are some key best practices for
using loops effectively:

 Avoid Infinite Loops
Ensure that your loop has a well-defined exit condition to avoid infinite loops.
Example:
// Infinite loop example (avoid this)
while (true) {
 // Some code
}

// Proper loop with exit condition
int i = 0;

Centre for Distance Education 4.10 Acharya Nagarjuna University

while (i < 10) {
 // Some code
 i++;
}
Always ensure that the loop condition will eventually become false. Consider using loop
control variables and updates within the loop body to prevent infinite execution.

 Use Descriptive Loop Variables
Use meaningful names for loop control variables to make your code more readable and self-
explanatory.
Example:
// Less descriptive variable name
for (int i = 0; i < array.length; i++) {
 System.out.println(array[i]);
}

// More descriptive variable name
for (int index = 0; index < array.length; index++) {
 System.out.println(array[index]);
}
Descriptive names help others (and yourself) understand the purpose of the loop variable,
improving code readability.

 Optimize Loop Performance
Optimize loops to avoid unnecessary computations or operations within the loop.
Example:
// Inefficient example
for (int i = 0; i < array.length; i++) {
 for (int j = 0; j < array.length; j++) {
 // Some operations
 }
}

// More efficient example (if array.length does not change)
int length = array.length;
for (int i = 0; i < length; i++) {
 for (int j = 0; j < length; j++) {
 // Some operations
 }
}
Calculating the length of an array or collection once before the loop can reduce redundant
operations and improve performance.

 Minimize Nested Loops
Avoid deep nesting of loops when possible. Deeply nested loops can lead to performance
issues and complex code.
Example:
// Deeply nested loops (use with caution)
for (int i = 0; i < 10; i++) {
 for (int j = 0; j < 10; j++) {

OOP with Java 4.11 Control Statements

 for (int k = 0; k < 10; k++) {
 // Some operations
 }
 }
}

// Alternative approach
// Use simpler logic if possible or break down into functions
Reducing the depth of nested loops can simplify your code and make it easier to understand.
Look for opportunities to optimize or refactor complex loop structures.

 Use Loop Control Statements Wisely
Use break and continue statements judiciously to control loop execution and improve
readability.
Example:
// Using break to exit early
for (int i = 0; i < array.length; i++) {
 if (array[i] == target) {
 System.out.println("Target found!");
 break;
 }
}

// Using continue to skip iterations
for (int i = 0; i < array.length; i++) {
 if (array[i] % 2 == 0) {
 continue; // Skip even numbers
 }
 System.out.println(array[i]); // Process odd numbers
}
break and continue can help manage loop flow effectively, but excessive use can make code
harder to follow. Ensure their usage is clear and purposeful.

 Avoid Unnecessary Computations
Avoid placing computationally expensive operations or function calls inside the loop
condition or body if they do not need to be executed repeatedly.
Example:
// Inefficient example
for (int i = 0; i < array.length; i++) {
 if (array[i] < computeExpensiveValue()) {
 // Some operations
 }
}

// More efficient example
int expensiveValue = computeExpensiveValue();
for (int i = 0; i < array.length; i++) {
 if (array[i] < expensiveValue) {
 // Some operations
 }

Centre for Distance Education 4.12 Acharya Nagarjuna University

}
Compute values outside the loop if they do not change, and reuse the result within the loop to
improve efficiency.

 Ensure Proper Resource Management
When dealing with resources like files or network connections, ensure that resources are
properly managed and closed, typically using try-with-resources or finally blocks.
Example:
// Proper resource management with try-with-resources
try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {
 String line;
 while ((line = reader.readLine()) != null) {
 // Process each line
 }
} catch (IOException e) {
 e.printStackTrace();
}
Ensuring resources are closed properly prevents resource leaks and potential issues with file
or network operations.

 Test with Edge Cases
Test your loops with various input scenarios, including edge cases such as empty arrays,
single-element arrays, or large datasets.
Example:
// Test edge cases
int[] emptyArray = {};
int[] singleElementArray = {1};
int[] largeArray = new int[10000]; // Large dataset

// Run tests for these scenarios

Testing with different scenarios ensures that your loops handle various input
conditions correctly and robustly.

Following these best practices helps you write efficient, readable, and maintainable
loop-based code. By avoiding common pitfalls and optimizing loop performance, you can
improve the quality of your Java applications and ensure that they function as intended.

4.7 SUMMARY

Loop statements in Java are essential control structures that allow developers to
execute a block of code multiple times, facilitating tasks such as iteration over data, repetitive
processing, and dynamic control flow. Java offers three primary types of loops: for, while,
and do-while. The for loop is best suited for scenarios with a known number of iterations,
while the while loop is ideal for cases where the number of iterations is uncertain, and the do-
while loop guarantees at least one execution of the loop body. Nested loops enable handling
complex data structures like multi-dimensional arrays and generating intricate patterns. Best
practices for using loops include avoiding infinite loops, optimizing performance, and
minimizing deep nesting. Effective use of loop control statements (break, continue, and
return) further enhances loop management. By adhering to these principles, developers can

OOP with Java 4.13 Control Statements

write efficient, maintainable, and robust loop constructs in Java, addressing a wide range of
programming challenges.

4.8 TECHNICAL TERMS

 while
 for
 do-while
 nested loop
 break
 continue
 return

4.9 SELF ASSESSMENT QUESTIONS

 Essay questions:

1. Explain the structure and usage of a for loop in Java, and provide an example.
2. Describe the use of nested loops in Java and provide an example where nested loops

are necessary.
3. Discuss how you would handle performance optimization when using loops in Java.

Provide an example.
4. Explain the difference between using a while loop and a do-while loop with an

example. When would you prefer one over the other?
5. How do loop control statements like break and continue affect loop execution? Provide

examples of their use.

 Short questions:

1. What is a for loop in Java?
2. How does a while loop differ from a do-while loop in Java?
3. What is the purpose of the break statement in a loop?
4. What does the continue statement do in a loop?
5. How can you exit a loop early based on a condition?

4. 10 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021), McGraw-
Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly Media
3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley Professional

 Dr. KAMPA LAVANYA

LESSON- 5

ARRAYS and STRINGS

OBJECTIVES:

After going through this lesson, you will be able to
 Learn about different types of arrays
 Understand how to determine the length of an array
 Explore various operations on arrays
 Learn the different ways to create strings
 Understand the concept of string immutability
 Explore the impact of string operations on performance.

STRUCTURE:

5.1 Arrays – Introduction
5.2 Types of Array
5.3 Creation of Arrays

5.3.1. Single-Dimensional Arrays
 5.3.1.1 Characteristics of One-Dimensional Arrays
5.3.2. Multi-Dimensional Arrays
 5.3.2.1 Two-Dimensional Arrays

5.4 Operation performed on Arrays
5.4.1. Modifying Elements:
5.4.2. Traversing an Array
5.4.3. Finding the Length of an Array
5.4.4. Copying an Array
5.4.5. Sorting an Array
5.4.6. Accessing an element
5.4.7. Traversing a 2D array
5.4.8. Searching an Element

5.5 Strings – Introduction
5.6 Creating Strings

5.6.1. Using String Literals
5.6.2. Using the 'new' Keyword
5.6.3. Using Character Arrays

5.7 String class methods
5.8 String comparison
5.9 Immutability of Strings
5.10 Summary
5.11 Technical Terms
5.12 Self-Assessment Questions
5.13 Further Readings

5.1 ARRAYS – INTRODUCTION

Java arrays are a fundamental data structure that allows developers to store multiple
values of the same type in a single, contiguous block of memory. An array in Java is a
collection of similar data types, and it is indexed, meaning each element in the array is

Centre for Distance Education 5.2 Acharya Nagarjuna University

identified by a specific number, known as an index. Arrays are widely used in Java
programming for various tasks, including storing lists of items, manipulating data, and
implementing algorithms that require data storage and retrieval. Understanding arrays is
essential for any Java programmer as they provide the foundation for more complex data
structures and algorithms.

In Java, arrays are objects that are dynamically allocated on the heap. The size of an array
is fixed at the time of its creation, which means that once an array is created, it cannot grow
or shrink. This fixed size is both a strength and a limitation of arrays. On the one hand, it
allows for efficient memory management since the memory required for an array is allocated
in one go, making access to its elements fast and predictable. On the other hand, it means that
if you need to add more elements than the array can hold, you'll need to create a new array
with a larger size and copy the elements over.

There are different types of arrays in Java, including single-dimensional and multi-
dimensional arrays. A single-dimensional array is the simplest form of an array, which can be
thought of as a list of elements, all of the same type. Multi-dimensional arrays, on the other
hand, are arrays of arrays. The most common type of multi-dimensional array is the two-
dimensional array, which can be visualized as a grid or table of elements. These multi-
dimensional arrays are useful for representing more complex data structures, such as matrices
or graphs.

In addition to their basic functionality, Java arrays come with a host of utility functions
provided by the `java.util.Arrays` class. This class includes static methods that can perform
tasks such as sorting arrays, filling arrays with a specific value, copying arrays, and
converting arrays to strings. These utilities make working with arrays in Java more flexible
and powerful, allowing developers to handle arrays in a more sophisticated and streamlined
manner. As such, arrays are not just a collection of elements but are a robust tool for
managing and manipulating data in Java.

5.2 TYPES OF ARRAY

In Java, arrays can be categorized into several types based on their dimensions and structure.

A one-dimensional array in java is an object. They are dynamically created and may
be assigned to variables of type Object. An Object class in java is the parent class of all
classes by default. All the methods in the class Object can be invoked on an array.
There are two types of array:
 One-dimensional array
 Multi-dimensional array

5.2 types of arrays in Java

OOP with Java 5.3 Arrays and Strings

5.3 CREATION OF ARRAYS

5.3.1. Single-Dimensional Arrays

A one-dimensional array, often referred to as a vector, is a data structure that stores a
sequence of elements of the same type in a contiguous block of memory. Here’s a breakdown
of its key characteristics:

5.3.1.1 Characteristics of One-Dimensional Arrays:

1. Single Index Access: Each element in the array can be accessed using a single index.
For example, in an array arr, arr[0] accesses the first element, arr[1] accesses the
second element, and so on.

2. Fixed Size: The size of a one-dimensional array is determined when it is created and
cannot be changed. This means the number of elements it can hold is fixed.

3. Contiguous Memory: The elements of the array are stored in contiguous memory
locations. This makes accessing elements very efficient because you can directly
compute the memory address of any element based on its index.

4. Homogeneous Elements: All elements in the array must be of the same data type, such
as integers, floats, characters, or any user-defined type

Figure 5.2 Single - dimensional array representation

Syntax:
dataType[] arrayName; // Declaration
arrayName = new dataType[arraySize]; // Instantiation
// or
dataType[] arrayName = new dataType[arraySize]; // Declaration and
instantiation

Example:
int[] numbers = new int[5]; // Creates an array of integers with 5 elements
numbers[0] = 10; // Assigns the value 10 to the first element
numbers[1] = 20; // Assigns the value 20 to the second element

// Declaring, instantiating, and initializing an array in one line
String[] students = {"Shourya "Arya", "Surya"};
System.out.println(students[0]); // Outputs "Arya"

Arrays can be initialized when they are declared. The process is much the same as that
used to initialize the simple types. An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas separate the values of the array
elements. The array will automatically be created large enough to hold the number of
elements you specify in the array initializer. There is no need to use new.

Centre for Distance Education 5.4 Acharya Nagarjuna University

For example, to store the number of days in each month, the following code creates an
initialized array of integers:
// An improved version of the previous program.
class AutoArray
{
 public static void main(String args[])
{
int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
System.out.println("April has " + month_days[3] + " days.");
}
}

Example Program 1: Java Program to Illustrate Wrong Way of Copying an Array
// A Java program to demonstrate that simply assigning one array reference is incorrect

public class Sample {
 public static void main(String[] args)
 {
 int a[] = { 56, 34, 32 };

 // Create an array b[] of same size as a[]
 int b[] = new int[a.length];

 // Doesn't copy elements of a[] to b[], only makes b refer to same location
 b = a;

 // Change to b[] will also reflect in a[] as 'a' and 'b' refer to same location.
 b[0]++;

 System.out.println("Contents of a[] ");
 for (int i = 0; i < a.length; i++)
 System.out.print(a[i] + " ");

 System.out.println("\n\nContents of b[] ");
 for (int i = 0; i < b.length; i++)
 System.out.print(b[i] + " ");
 }
}

Output:
Contents of a[]
56 34 32
Contents of b[]
56 34 32

Example program 2:
import java.util.Arrays;
class SrtAry {
 public static void main(String args[])
 {
 int[] arr = { 25, -34, 45, 78, 99, -51, 230 };

OOP with Java 5.5 Arrays and Strings

 System.out.println("The original array is: ");
 for (int num : arr) {
 System.out.print(num + " ");
 }
 Arrays.sort(arr);
 System.out.println("\nThe sorted array is: ");
 for (int num : arr) {
 System.out.print(num + " ");
 }
 }
}
The original array is:
25, -34, 45, 78, 99, -51, 230
The sorted array is:
-42 -2 5 7 23 87 509

5.3.2. Multi-Dimensional Arrays

Multi-dimensional arrays are arrays that contain other arrays as their elements. The
most common form is the two-dimensional array, which can be visualized as a table or grid.
However, Java supports arrays with more than two dimensions.
In Java, multidimensional arrays are actually arrays of arrays. These, as we might expect,
look and act like regular multidimensional arrays. However, as you will see, there are a
couple of subtle differences.

5.3.2.1 Two-Dimensional Arrays
A two-dimensional array in Java is essentially an array of arrays. It is often used to represent
matrices, tables, or grids.
To declare a multidimensional array variable, specify each additional index using another set
of square brackets.
Conceptually, this array will look like the one shown in Figure 5.2

Syntax:
dataType[][] arrayName; // Declaration
arrayName = new dataType[rows][columns]; // Instantiation
// or
dataType[][] arrayName = new dataType[rows][columns]; // Declaration and instantiation

Centre for Distance Education 5.6 Acharya Nagarjuna University

Figure 5.3 structure of multi-dimensional array

For example, the following declares a twodimensional array variable called twoD.
int twoD[][] = new int[4][5];
This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as
an array of arrays of int..
More examples:
int[][] matrix = new int[3][3]; // Creates a 3x3 matrix
matrix[0][0] = 1; // Assigns 1 to the element at first row, first column
matrix[0][1] = 2; // Assigns 2 to the element at first row, second column

// declaring, instantiating, and initializing a 2D array in one line
int[][] table = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
};
System.out.println(table[1][2]);
The above code outputs 6 (second row, third column)
Each type of array in Java serves different use cases depending on the data structure
requirements. Single-dimensional arrays are straightforward and useful for simple lists, multi-
dimensional arrays are excellent for representing grid-like structures, and jagged arrays offer
flexibility when dealing with non-uniform data.

Example programs:
Write a java program to perform addition on two matrices
public class MatAdd
{
 public static void main(String args[])
 {
 //creating two matrices
 int a[][]={{1,3,4},{2,4,3},{3,4,5}};
 int b[][]={{1,3,4},{2,4,3},{1,2,4}};

 //creating another matrix to store the sum of two matrices
 int c[][]=new int[3][3]; //3 rows and 3 columns

OOP with Java 5.7 Arrays and Strings

 //adding and printing addition of 2 matrices
 for(int i=0;i<3;i++)
 {
 for(int j=0;j<3;j++)
 {
 c[i][j]=a[i][j]+b[i][j]; //use - for subtraction
 System.out.print(c[i][j]+" ");
 }
 System.out.println();//new line
 }
 }
 }

5.4 OPERATION PERFORMED ON ARRAYS

The following are some common operations that can be performed on arrays in Java

5.4.1 Modifying Elements:
We can modify an element in an array by directly assigning a new value to a specific index.
Example:
int[] ages = {10, 20, 30, 40, 50};

// Modifying the second element
ages[1] = 25;

// Printing the modified array
System.out.println(ages[1]); // Output: 25
``` 
5.4.2 Traversing an Array 
Traversing an array means accessing each element of the array one by one. This can be done 
using a `for` loop or an enhanced `for` loop (also known as the "for-each" loop). 
Example: 
int[] ages = {10, 20, 30, 40, 50}; 
 
// Using a traditional for loop 
for (int i = 0; i < ages.length; i++) { 
    System.out.println(ages[i]); 
} 
 
// Using an enhanced for loop 
for (int age : ages) { 
    System.out.println(age); 
} 
 
5.4.3 Finding the Length of an Array 
The length of an array (number of elements it can hold) can be found using the `length` 
property. 
Example: 
int[] ages = {10, 20, 30, 40, 50}; 
// Finding the length of the array 



Centre for Distance Education                                           5.8                                Acharya Nagarjuna University 

System.out.println("The length of the array is: " + ages.length);  
 
Output: 5 

 
Figure 5.4 structure of multi-dimensional array 
 
5.4.4 Copying an Array 
We can copy elements from one array to another using the `System.arraycopy()` method or 
`Arrays.copyOf()` from the `java.util.Arrays` class. 
Example: 
 
int[] source = {1, 2, 3, 4, 5}; 
int[] destination = new int[5]; 
 
// Copying elements using System.arraycopy() 
System.arraycopy(source, 0, destination, 0, source.length); 
 
for (int num : destination) { 
    System.out.println(num); 
} 
 
5.4.5 Sorting an Array 
Java provides a built-in method to sort arrays using the `Arrays.sort()` method from the 
`java.util.Arrays` class. 
Example: 
import java.util.Arrays; 
 
int[] numbers = {5, 2, 8, 3, 1}; 
 
// Sorting the array 
Arrays.sort(numbers); 
 
for (int number : numbers) { 
    System.out.println(number); 
} 
Output: 1 2 3 5 8 
 



OOP with Java                                                            5.9                                                           Arrays and Strings 

 

 
 

5.4.6 Accessing an element 
Accessing an element from a multidimensional array in Java is done using multiple indices, 
one for each dimension. 
System.out.println(matrix[1][2]);  
 matrix[1] refers to the second row (index 1) of the array. 
 matrix[1][2] refers to the third element (index 2) in the second row. 
 
Output: 5 
 
5.4.7 Traversing a 2D array 
The process of accessing an individual element can be used during a 2D array traversal, 
which can be used to return all elements in a 2D array. 
For a 2D array, this initial traversal is used to access each array in the 2D array, and a nested 
for loop is needed to access each element within the selected array: 
for (int i = 0; i < matrix.length; i++) { 
    for (int j = 0; j < matrix[i].length; j++) { 
        System.out.print(matrix[i][j] + " "); 
    } 
    System.out.println(); 
} 
 
5.4.8 Searching an Element 
 
We can search for an element in an array using a loop or using built-in methods like 
`Arrays.binarySearch()`. 
Example: 
import java.util.Arrays; 
 
int[] numbers = {1, 2, 3, 4, 5}; 
 
// Searching for an element (binary search requires the array to be sorted) 
int index = Arrays.binarySearch(numbers, 3); 
 
if (index >= 0) { 
    System.out.println("Element found at index: " + index); 
} else { 
    System.out.println("Element not found"); 
} 
 
5.5 STRINGS – INTRODUCTION 

 
In Java, a 'String' is a sequence of characters. It is one of the most commonly used data 

types and is implemented as a class ('java.lang.String'). Strings are immutable, meaning once 
a 'String' object is created, it cannot be changed. This immutability offers benefits such as 
thread safety and efficient memory usage. 
 
 
 
 
 



Centre for Distance Education                                           5.10                                Acharya Nagarjuna University 

5.6  CREATING STRINGS 
 

There are several ways to create strings in Java: 
 
5.6.1 Using String Literals: When a string is created using string literals, it is stored in the 
string pool. If the same string literal is used again, Java reuses the string from the pool instead 
of creating a new object. 
Example: 
   String str1 = "Hello, World!"; 
 
5.6.2 Using the 'new' Keyword: This creates a new string object, bypassing the string pool. 
Example: 
   String str2 = new String("Acharya Nagarjuna University”) 
 
5.6.3 Using Character Arrays: A string can be created from a character array using the 
'String' constructor. 
Example: 
char[] charArray = {‘A’, ‘c’, ‘h’, ‘a’, ‘r’,’y’,’a’}; 
String str3 = new String(charArray); 
 
5.7  STRING CLASS METHODS 
 
The 'String' class provides many useful methods for manipulating and working with strings. 
Here are some common ones: 
1. length(): Returns the length of the string. 
  String str = "University"; 
   int len = str.length();  
  Output:  9 
    
2. charAt(int index): Returns the character at the specified index. 
   char ch = str.charAt(1);  
 Output: 'n' 
 
3. substring(int beginIndex, int endIndex): Returns a substring from the specified 
'beginIndex' to 'endIndex'. 
  String substr = str.substring(1, 4);  
 Output: "niv" 
 
4. indexOf(String str): Returns the index of the first occurrence of the specified substring. 
   int index = str.indexOf("v");  
Output: 3 
 
5. toLowerCase()' and 'toUpperCase(): Converts all characters in the string to lowercase or 
uppercase. 
   String lower = str.toLowerCase();  
Output: "university " 
   String upper = str.toUpperCase();  
Output: "UNIVERSITY" 
 
6. trim(): Removes leading and trailing whitespace. 



OOP with Java                                                            5.11                                                           Arrays and Strings 

 

 
 

   String strWithSpaces = "   Surya   "; 
   String trimmedStr = strWithSpaces.trim();  
Output: "Surya" 
 
7. 'replace(char oldChar, char newChar)': Replaces occurrences of a specified character 
with another character. 
   String replacedStr = str.replace('t', 'Z');  
   Output: " UniversiZy " 
 
8. equals(Object obj): Compares the string to another object for equality. 
   String str2 = "Hello"; 
   boolean isEqual = str.equals(str2);  
   Output: true 
 
9. equalsIgnoreCase(String anotherString): Compares two strings, ignoring case 
considerations. 
   String str3 = "university"; 
   boolean isEqualIgnoreCase = str.equalsIgnoreCase(str3);  
 Output: true 
 
10. split(String regex): Splits the string around matches of the given regular expression. 
   String sentence = "Acharya Nagarjuna University"; 
   String[] words = sentence.split(" ");  
Output: ["Acharya”, “Nagarjuna”,  “University"]; 
 
5.8  STRING COMPARISON 
 
1. equals(): Compares two strings for content equality. 
   String str1 = "Hello"; 
   String str2 = "Hello"; 
   boolean result = str1.equals(str2);  
   Output: true 
    
2. equalsIgnoreCase(): Compares two strings for equality, ignoring case. 
   String str3 = "hello"; 
   boolean result = str1.equalsIgnoreCase(str3);  
  Output: true 
 
3. compareTo(): Compares two strings lexicographically. 
The 'compareTo' method returns: 
   - '0' if the strings are equal 
   - A positive number if the first string is lexicographically greater 
   - A negative number if the first string is lexicographically smaller 
Example: 
   String str4 = "apple"; 
   String str5 = "banana"; 
   int comparison = str4.compareTo(str5);  
  Output: Negative number (-1) 
 



Centre for Distance Education                                           5.12                                Acharya Nagarjuna University 

4. '==' operator: Compares references, not values. It checks if two strings point to the same 
memory location. 
   String str6 = new String("Hello"); 
   boolean isSameReference = (str1 == str6);  
  Output: false 
    
5.9  IMMUTABILITY OF STRINGS 

 
Strings in Java are immutable. This means once a 'String' object is created, its value cannot be 
changed. Any modification to a string results in the creation of a new string object. 
 
Why Strings Are Immutable: 
1. Security: Strings are frequently used as parameters in network connections, file paths, etc. 
Immutable strings ensure that these values cannot be changed once created, reducing security 
risks. 
2. Synchronization and Concurrency: Immutable strings are inherently thread-safe since 
their values cannot change after creation. This eliminates the need for synchronization when 
multiple threads are working with strings. 
3. Performance: Java's string pool reuses immutable string literals, which saves memory and 
reduces the overhead of creating new string objects. 
 
Example 1: 
String str = "Hello"; 
str.concat(" World"); // The original string 'str' is not modified 
System.out.println(str);  
Output: "Hello" 
 
Example 2: 
String newStr = str.concat(" World"); 
System.out.println(newStr);  
Output: "Hello World" 
 
In this example, 'str.concat(" World")' does not modify 'str'. Instead, it creates a new string 
'"Hello World"' and returns it. The original string 'str' remains unchanged, demonstrating the 
immutability of strings in Java. 
 
5.10 SUMMARY 
 

The chapters on Arrays and Strings in Java cover essential concepts and operations 
for handling these fundamental data types. Arrays are collections of elements of the same 
type, and Java supports both single-dimensional and multi-dimensional arrays. Key topics 
include array declaration, initialization, accessing elements, finding an array's length, and 
various manipulations like sorting and searching. The array name is a reference to the 
memory location where the array is stored, and the length property gives the number of 
elements in the array. Strings in Java are sequences of characters that are immutable, meaning 
once created, their content cannot be changed. Topics covered include creating strings using 
literals and constructors, various String class methods for manipulation and inspection, 
comparing strings using methods like equals() and compareTo(), and understanding the 
immutability of strings, which provides benefits like thread safety and efficient memory 
usage through the string pool. 



OOP with Java                                                            5.13                                                           Arrays and Strings 

 

 
 

 
5.11 TECHNICAL TERMS 

 
Java Array, single – dimension, multi – dimension, String, Immutability 
 
5.12 SELF ASSESSMENT QUESTIONS 
 
Essay questions: 

1. What is an array in Java, and how is it different from a single variable? 
2. How do you find the length of an array in Java? Provide a code example. 
3. Explain the difference between == and equals() when comparing strings in Java. 
4. Give an example of how to declare and initialize a multi-dimensional array in Java. 

  
Short Answer Questions:   

1. Discuss the advantages and disadvantages of using arrays in Java. Include examples to 
illustrate your points. 

2. Write a java program to perform multiplication on two matrices 
3. Explain the concept of immutability in Java strings. How does this feature benefit Java 

programs, and what are some potential drawbacks? 
4. Examine the role of the length property in arrays and strings in Java. How does it differ 

between the two, and why is this distinction important? 
 
5.13  SUGGESTED READINGS 
 

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive 
Introduction”, McGraw Hill, 1st Edition, 2013.  

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 
2018.  

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson 
Education, Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:  

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.  
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st 

Edition, 2007.  
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd 

Edition, 2014 
 
 
                     Dr. U. SURYA KAMESWARI 
 



LESSON- 6 

CLASSES and OBJECTS 
 
OBJECTIVES: 
 
After going through this lesson, you will be able to  

 Define what a class is 
 Understand the process of object instantiation and memory allocation. 
 Understand the concept of instance variables 
 Explain the role of access specifiers  
 Define constructors and their role in object initialization. 

 
STRUCTURE: 
 

6.1 Classes  
6.1.1 Properties of a Java Class 
6.1.2 Components of a class 

6.1.2.1 Class Declaration 
6.1.2.2. Fields (Instance Variables) 
6.1.2.3. Constructors 
6.1.2.4. Methods 
6.1.2 5. Access Modifiers 
6.1.2.6. Static Members 
6.1.2.7. Inner Classes 
6.1.2.8. Blocks 
6.1.2.9. Comments 

6.2 Objects 
 6.2.1 Declaring Objects in Java 
 6.2.2 Initializing a Java object 
  6.2.2.1 By Reference Variable 

6.2.2.2 By method 
6.2.2.3 By constructor 

6.3 Object creation 
6.3.1 Using new Keyword 
6.3.2 Using Class.forName(String className) Method 
6.3.3 Using clone() Method 

6.4 Initializing the instance variables 
6.4.1. Default Initialization 
6.4.2. Explicit Initialization 
6.4.3. Initialization Using Constructors 
6.4.4. Initialization Using Instance Initialization Blocks 
6.4.5. Initialization Using Methods 
6.4.6. Initialization Using Setter Methods 

6.5 Access Specifiers 
6.5.1 Default Access Modifier 
6.5.2 Private Access Modifier 
6.5.3. Protected Access Modifier 
6.5.4 Public Access Modifier 

 



Centre for Distance Education                                         6.2                                  Acharya Nagarjuna University  

 

6.6 Constructors 
6.6.1 Characteristics of Constructors 
6.6.2 Types of Constructors 

6.6.2.1   Default Constructor (No-Argument Constructor) 
6.6.2.2   Parameterized Constructor 

6.6.3 Constructor Overloading 
6.6.4 Calling a Superclass Constructor 

6.7 Summary 
6.8 Technical Terms 
6.9 Self-Assessment Questions 
6.10 Further Readings 
 
6.1   CLASSES 
 

Java is a programming language that requires the use of classes at all times and forces the 
developer to use an object model. In order to represent objects that combine together different 
pieces of data and methods, classes are used as a prototype. Each creature that possesses a 
state and behavior is referred to as an object. As a consequence of this, we understand a 
problem in the world in terms of objects, and we carry out actions by calling the set of 
methods that are connected with those objects. 

 
The Java programming language's class and object concepts are extremely helpful in the 

development process as well as in the resolution of complex issues. 
 
Within the Java programming language, a class acts as a template for the creation of 

objects that have common behaviors and properties. A Car class, which represents individual 
automobiles, is an example of something that embodies attributes and meaning inside a 
particular context. Classes are used to preserve common attributes and behaviors, which 
makes the process of creating and managing objects in programming more practical and 
efficient. 
 
6.1.1 Properties of a Java Class: 

 An object can be created using a Java class, which does not consume any memory and 
acts as a template for creation. 

 Variables of a wide variety of types and approaches are included in it. Data members, 
methods, constructors, nested classes, and interfaces are all allowable components 
that can be contained within a class. 

 The behavior of objects in your program can be organized and defined with the help 
of this template, which functions as a template 

  
Syntax for creating a class: 
<<access specier>>  class <<ClassName>> 
 { 
    // declaration section for  
    // methods and attributes 
} 

 A class declaration may have zero or more modifiers. 
 The keyword class is used to declare a class. 



OOP with Java                                                       6.3                                                              Classes and Objects 

 

 
 

 The <<class name>> is a user-defined name of the class, which should be a valid 
identifier. 

 Each class has a body, which is specified inside a pair of braces ({ … }). 
 The body of a class contains its different components, for example, fields, methods, 

etc 
 

Example: 
class Car{ 
    // declaration of private attributes 
    private String modelName; 
    private String owner; 
    private int regNumber; 
     
    // declaration of public constructor 
    public Car(String modelName, String owner, int regNumber){ 
        this.modelName = modelName; 
        this.owner = owner; 
        this.regNumber = regNumber; 
    } 
     
    // declaration of public methods 
    public void startEngine(){ 
        System.out.println("Engine is starting ...."); 
    } 
     
    public void accelerate(){ 
        System.out.println("Car is accelerting ..."); 
    } 
     
    public void stop(){ 
        System.out.println("Car is stopping ..."); 
    } 
    // prints car attributes 
 public void showCarInformation(){ 
        System.out.println("The car is owned by: " + this.owner); 
        System.out.println("Car Model: " + this.modelName); 
        System.out.println("Registration Number: " + 
String.valueOf(this.regNumber)); 
    } 
} 
 

An example of how classes and objects are implemented in Java may be seen in the code that 
is displayed above. The Car class contains private attributes hidden from the outside world. In 
other words, if you call out the modelName attribute outside of the scope of the Car class, 
you will cause an error to be generated by the compiler. 
 
6.1.2 Components of a class: 
 
6.1.2.1 Class Declaration 
This is the header of the class that specifies its name, access level, and any other class 
modifiers. It begins with the class keyword. 
Syntax: 
public class ClassName { 
    // class body 
} 
 



Centre for Distance Education                                         6.4                                  Acharya Nagarjuna University  

 

Example: 
public class Car { 
    // class body 
} 
 
6.1.2.2. Fields (Instance Variables) 
Fields, also known as instance variables, represent the properties or state of a class. These are 
variables declared inside the class but outside any method, constructor, or block. Each object 
of the class can have different values for these variables. 
Syntax: 
private int numberOfDoors; 
public String color; 
 
Example: 
 
public class Car { 
    private String model; 
    public int year; 
} 
 

6.1.2.3. Constructors 
A constructor is a special method that is called when an object of the class is created. It is 
used to initialize the object. Constructors have the same name as the class and do not have a 
return type. 
Syntax: 
public ClassName(parameters) { 
    // constructor body 
} 
 
Example: 
public class Car { 
    private String model; 
    public int year; 
 
    // Constructor 
    public Car(String model, int year) { 
        this.model = model; 
        this.year = year; 
    } 
} 
 
6.1.2.4. Methods 
Methods define the behaviors of the objects created from the class. They are blocks of code 
that perform a specific task and can be called upon to execute. Methods can have return types 
and parameters. 
Syntax: 
public returnType methodName(parameters) { 
    // method body 
} 
 
 
 
 
 



OOP with Java                                                       6.5                                                              Classes and Objects 

 

 
 

Example: 
public class Car { 
    private String model; 
    public int year; 
 
    public Car(String model, int year) { 
        this.model = model; 
        this.year = year; 
    } 
 
    // Method 
    public void displayInfo() { 
        System.out.println("Model: " + model + ", Year: " + year); 
    } 
} 
 

6.1.2 5. Access Modifiers 
Access modifiers control the visibility of the class, fields, constructors, and methods. 
Common access modifiers include public, private, protected, and package-private (no explicit 
modifier). 
- public: The class, method, or field is accessible from any other class. 
- private: The method or field is accessible only within the class it is declared. 
- protected: The method or field is accessible within its own package and by subclasses. 
- Package-private (default): The method or field is accessible only within its own package. 
 
Example: 
public class Car { 
    private String model; // private access 
    public int year;      // public access 
} 

 
6.1.2.6. Static Members 
Static members (fields or methods) belong to the class itself rather than any particular object 
instance. They are shared among all instances of the class. 
- Static Fields: Shared among all objects of the class. 
- Static Methods: Can be called without creating an instance of the class. 
Syntax: 
 
public static returnType methodName(parameters) { 
    // static method body 
} 
Example: 
public class Car { 
    private String model; 
    public int year; 
    public static int numberOfCars; // Static field 
 
    public static void showNumberOfCars() { // Static method 
        System.out.println("Total Cars: " + numberOfCars); 
    } 
} 
 

6.1.2.7. Inner Classes 
A class can have another class defined inside it, known as an inner class. Inner classes are 
useful for logically grouping classes that are only used in one place. 



Centre for Distance Education                                         6.6                                  Acharya Nagarjuna University  

 

Syntax: 
public class OuterClass { 
    class InnerClass { 
        // inner class body 
    } 
} 
 
Example: 
public class Car { 
    private String model; 
    public int year; 
 
    // Inner class 
    class Engine { 
        public void start() { 
            System.out.println("Engine started."); 
        } 
    } 
} 

 
6.1.2.8. Blocks 
Java allows the use of blocks to initialize fields or perform actions that are shared among 
constructors. These blocks are executed in the order they are defined. 
- Instance Initialization Block: Runs every time an instance is created. 
- Static Initialization Block: Runs once when the class is loaded. 
Example: 
public class Car { 
    static { 
        System.out.println("Static block executed"); 
    } 
    { 
        System.out.println("Instance block executed"); 
    } 
    public Car() { 
        System.out.println("Constructor executed"); 
    } 
} 
 

6.1.2.9. Comments 
Comments are used to make the code more understandable and are ignored by the compiler. 
Java supports single-line (//) and multi-line (/* ... */) comments, as well as Javadoc comments 
(/ ... */) for generating documentation. 
 
Example: 
public class Car { 
    // Single-line comment 
    private String model; // Field to store car model 
 
    / 
     * Constructor to initialize car object 
     */ 
    public Car(String model) { 
        this.model = model; 
    } 
} 

  



OOP with Java                                                       6.7                                                              Classes and Objects 

 

 
 

6.2  OBJECTS 
 

A real-world entity is modeled by an object in the world. When modeling entities, it is 
necessary to determine the state of the object as well as the set of actions that may be carried 
out within that object. Object-oriented programming relies heavily on this method of thinking 
as its foundation. 

 In Java, the root class of all objects that have been instantiated is called an Object. 
 Instantiated objects are names that refer to an instance of the class. 

 

 
Figure 6.1 class and objects 

 
6.2.1 Declaring Objects in Java 
 
Sphere sphere = new Sphere(10); 
The first two tokens in the code snippet above declare an object in Java. When we read into 
the code, it means creating a new instance of Sphere and initializing its radius to 10. 
 
6.2.2 Initializing a Java object 
As mentioned, a constructor initializes an object in Java. Multiple class constructors mean 
that instantiating an object can have different signatures. We use the new 
NameOfClass([arguments_values])) to initialise a new object.  
There are mainly three ways to initialize an object in Java: 
 
6.2.2.1 By Reference Variable 
A constructor may accept reference type parameters. 
Example:  
class Cube extends AbstractShape{ 
    private double side; 
    public Cube(Cube cubeReference){ 
        this(this.side); 
    } 
} 

 
The above code effectively copies the content of arguments passed in the constructor of type 
Cube. 
 
 
 



Centre for Distance Education                                         6.8                                  Acharya Nagarjuna University  

 

6.2.2.2 By method 
An object may be initialized with a setter function that alters the class's internal state and may 
be accessed with a getter function. This initialization allows only one instance of the class to 
be modified dynamically: one can alter that of the object at runtime. 
 

Example:  
class Cube extends AbstractShape{ 
 private double side; 
     
    public Cube(){ 
     System.out.println("Cube is instantiated.");     
    } 
    public void setSide(double side){ 
        this.side = side; 
    } 
     
    public double getSide(){ 
        return this.side; 
    } 
    // ... 
} 
 

class Main{ 
    public static void main(String [] args){ 
        Cube cube = new Cube(); 
        cube.setSide(5.7); 
     System.out.println("Internal state of the cube: " + cube.getSide());  
        cube.setSide(11.2); 
     System.out.println("Internal state of the cube: " + cube.getSide());     
    } 
} 
 

6.2.2.3 By constructor 
Finally, an object may be initialized by specifying arguments passed in a constructor. A 
constructor is a unique method that initializes the state of class instance. 
 
6.3   OBJECT CREATION 
 
Different Ways to Create Objects in Java 
There are different ways to instantiate an object in Java; this section aims to discuss and 
implement each style. 
 
6.3.1 Using new Keyword 
This is the most direct form of object creation in Java. This style tells Java to initialize a class 
instance and assign a reference to it in a named object, in this case, cube. 
 
Cube cube = new Cube(4.5); 
 

6.3.2 Using Class.forName(String className) Method 
This style can be attained if the class has a public constructor. The Class.forName() method 
does not yet instantiate an object; to do so, the newInstance() has to be typecast in the given 
class. 
 

class Cube { 
    public Cube(){ 
        System.out.println("Cube is instantiated."); 
    } 
    // ... 
} 



OOP with Java                                                       6.9                                                              Classes and Objects 

 

 
 

public class Main{ 
    public static void main(String[] args) throws ClassNotFoundException,  
                                                  InstantiationException, 
                                                  IllegalAccessException{ 
        Class obj = Class.forName("Cube"); 
        Cube cube = (Cube)obj.newInstance(); 
    } 
} 
 
6.3.3. Using clone() Method 
It requires the object to implement a Cloneable interface. Since objects are passed by 
reference in Java, changes that happen somewhere in the program affect the internal state of 
that object. In cases where we do not want unintended side effects to happen, we can copy the 
entire contents of an object and treat it independently. 
 
class Cube implements Cloneable{ 
    @Override 
    protected Object clone() throws CloneNotSupportedException { 
        return super.clone(); 
    } 
     
    public Cube(double x){ 
        System.out.println("instantiated with " + x); 
    } 
    // ... 
} 
 
public class Main{ 
    public static void main(String[] args) throws 
CloneNotSupportedException{ 
        Cube cube1 = new Cube(4.5);  
        Cube cube2 = (Cube)cube1.clone(); 
    } 
} 
 
6.4   INITIALIZING THE INSTANCE VARIABLES 

 
An instance variable in Java is a type of variable that is defined within a class but 

outside any method, constructor, or block. It is also known as a non-static field. Each instance 
(or object) of a class has its own copy of the instance variable, meaning that each object can 
have different values for these variables. 

 

 
Figure 6.2 types of variables 

 
 



Centre for Distance Education                                         6.10                                  Acharya Nagarjuna University  

 

There are several ways to initialize instance variables in Java: 
 
6.4.1. Default Initialization 
Java automatically initializes instance variables to their default values if they are not 
explicitly initialized.  
- Numeric types ('int', 'float', 'double', etc.) are initialized to '0' or '0.0'. 
- Characters ('char') are initialized to ''\u0000'' (the null character). 
- Booleans ('boolean') are initialized to 'false'. 
- Objects (any reference type, such as 'String') are initialized to 'null'. 
 
Example: 
public class Car { 
    // Instance variables 
    private String model; 
    private int year; 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); // Output: Model: null 
        System.out.println("Year: " + year);   // Output: Year: 0 
    } 
 
    public static void main(String[] args) { 
        Car myCar = new Car(); 
        myCar.displayInfo(); 
    } 
} 
 

6.4.2. Explicit Initialization 
Instance variables can be initialized explicitly when they are declared. This method assigns a 
specific value to the variable when the class instance is created. 
 
Example: 
public class Car { 
    // Explicit initialization 
    private String model = "Toyota"; 
    private int year = 2020; 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); // Output: Model: Toyota 
        System.out.println("Year: " + year);   // Output: Year: 2020 
    } 
 
    public static void main(String[] args) { 
        Car myCar = new Car(); 
        myCar.displayInfo(); 
    } 
} 
 

6.4.3. Initialization Using Constructors 
 
Constructors are special methods used to initialize objects. When an object is created, the 
constructor is called, and you can use it to initialize instance variables. 
 
 
 
 



OOP with Java                                                       6.11                                                              Classes and Objects 

 

 
 

Example: 
public class Car { 
    private String model; 
    private int year; 
 
    // Constructor to initialize instance variables 
    public Car(String model, int year) { 
        this.model = model; 
        this.year = year; 
    } 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); // Output: Model: Honda 
        System.out.println("Year: " + year);   // Output: Year: 2022 
    } 
 
    public static void main(String[] args) { 
        Car myCar = new Car("Honda", 2022); 
        myCar.displayInfo(); 
    } 
} 

 
6.4.4. Initialization Using Instance Initialization Blocks 
Instance initialization blocks are blocks of code inside a class that are executed whenever an 
object of the class is created. They are executed before the constructor. 
 
Example: 
public class Car { 
    private String model; 
    private int year; 
 
    // Instance initialization block 
    { 
        model = "Ford"; 
        year = 2019; 
    } 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); // Output: Model: Ford 
        System.out.println("Year: " + year);   // Output: Year: 2019 
    } 
 
    public static void main(String[] args) { 
        Car myCar = new Car(); 
        myCar.displayInfo(); 
    } 
} 
 

6.4.5. Initialization Using Methods 
Instance variables can also be initialized using methods. This approach allows more complex 
logic to be applied when initializing values. 
 
 
 
 
 
 



Centre for Distance Education                                         6.12                                  Acharya Nagarjuna University  

 

Example: 
public class Car { 
    private String model; 
    private int year; 
 
    public void initialize(String model, int year) { 
        this.model = model; 
        this.year = year; 
    } 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); // Output: Model: BMW 
        System.out.println("Year: " + year);   // Output: Year: 2021 
    } 
 
    public static void main(String[] args) { 
        Car myCar = new Car(); 
        myCar.initialize("BMW", 2021); 
        myCar.displayInfo(); 
    } 
} 

 
6.4.6. Initialization Using Setter Methods 
Setter methods are typically used to set or update the values of instance variables after the 
object has been created. This approach is common in JavaBeans and provides a controlled 
way to modify the object's state. 
 
Example: 
public class Car { 
    private String model; 
    private int year; 
 
    // Setter method for model 
    public void setModel(String model) { 
        this.model = model; 
    } 
 
    // Setter method for year 
    public void setYear(int year) { 
        this.year = year; 
    } 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); // Output: Model: Audi 
        System.out.println("Year: " + year);   // Output: Year: 2018 
    } 
 
    public static void main(String[] args) { 
        Car myCar = new Car(); 
        myCar.setModel("Audi"); 
        myCar.setYear(2018); 
        myCar.displayInfo(); 
    } 
} 
 

 
 
 



OOP with Java                                                       6.13                                                              Classes and Objects 

 

 
 

6.5  ACCESS SPECIFIERS 
 

Access Modifiers in Java impose limitations on the extent of the class, instance variables, 
methods, and constructor’s scope.  
 

In Java, there exist four access modifiers: Default, Private, Protected, and Public. Access 
modifiers in Java regulate visibility. Keeping personal income information within the family 
limits access to private information. Public grants unrestricted access, similar to complete 
awareness of your name by everyone. Protected is analogous to public, but with some 
restricted scope. The default value functions as a fundamental reference point, located within 
its package. These modifiers control the visibility of entities like as variables, constructors, 
and methods. 
 

 
Figure 6.3 types access modifiers 

 
6.5.1  Default Access Modifier 
Where no access modifier is expressly provided to class members and methods in Java, they 
default to package-private access. Consequently, they are exclusively accessible within the 
same package, hence commonly known as package-private.  
 
Real-world analogy: Envision configuring your Facebook privacy option to "visible only to 
your friends". Package-private access limits access to members and methods only within the 
same package, similar to regulating the visibility of your status to just known friends. 
 
Access within the same package: Members and methods with default access can be 
accessed freely within the same package. Access from another package: Attempting to access 
default members from another package results in an error, as default access doesn't permit 
this. 
 
Example 1 
In the example below is a package First containing two classes. We are trying to access the 
first-class default method in the second class.  
First Package 
package First; 
public class University { 
  int id = 1; 
  void print() { 
    System.out.println("This is the University class"); 
  } 
} 



Centre for Distance Education                                         6.14                                  Acharya Nagarjuna University  

 

class Hello { 
  public static void main(String[] args) { 
    University ob = new University();    
    //This line will call the print() method, which is having the default 
modifier 
    ob.print(); 
  } 
} 
 

Output: 
C:\Users\Surya\.jdks\openjdk-16.0.2\bin\java.exe 
This is the University class 
The program will run successfully because default members and the methods can be accessed 
in the same package. 
 
Example 2 
In the below example, we are accessing the default method of the First package class in 
another package, i.e. Second. 
 
Second Package 
package Second; 
import First.University; 
 
public class MyProgs { 
 
  public static void main(String[] args) { 
    University ob = new University(); 
       
    //This line will cause an error 
    ob.print(); 
  } 
} 

 
Output: 
C:\Users\Surya\Desktop\CP\src\Second\MyProgs.java 
java: print() is not public in First. University cannot be accessed from outside package 
We got an error because the default access modifiers in Java don't allow us to access the 
members and methods in another package. We are accessing the default method in another 
package in the above program. 
 
6.5.2.  Private Access Modifier 
The private modifier in programming limits access to certain data members and methods 
within a class. It's like setting your Facebook status to "only me" - only you can see it, and 
similarly, only the class itself can access private members. Even other classes in the same 
package can't access them. 
Example 
In the below class, we have two private instance members and a constructor, as well as a 
method of private type. 
class University { 
 
  //Private members 
  private int roll; 
  private String name; 
 
  //Parameterised Constructor 



OOP with Java                                                       6.15                                                              Classes and Objects 

 

 
 

  University(int a) { 
    System.out.print(a); 
  } 
 
  //Default constructor private 
  private University() {} 
 
  //Private method 
  private void print() { 
    System.out.println("This is the University class"); 
  } 
} 
 
class Main { 
 
  public static void main(String args[]) { 
    //Creating the instance of the University class 
    //This will successful run 
    University ob1 = new University(1); 
       
    //Creating another instance of University class 
    //This will cause an error 
    University ob = new University(); 
       
    //These two lines also cause errors. 
    ob.name = "Surya"; 
    ob.print(); 
  } 
} 

 
Output: 
C:\Users\Surya\Desktop\CP\src\University.java 
java: construcor University in class University cannot be applied to given types; 
required: no arguments 
found: no arguments 
reason: University() has private access in University 
     
C:\Users\Surya\Desktop\CP\src\University.java 
java: name has private access in University 
 
C:\Users\Surya\Desktop\CP\src\University.java 
java: print has private access in University 
 
6.5.3. Protected Access Modifier 

In Java, protected access is a valuable feature that enables access both within the same 
package and by subclasses, regardless of their membership in a separate package. Explicitly 
accessing protected members from another package requires extending the class that has 
those members. This entails instantiating a subclass in the alternative language package. Mere 
creation of an object belonging to the class does not provide access to its protected members; 
it is necessary to inherit them through a derived class. 

There are two packages, First and Second, The First package contains one public class 
and a protected prefixed method, and we are trying to access this method in another package 
in two ways. 

 Creating an instance of the University class (declared in First package) 
 Inheriting the University class in the MyProgs class of the Second package. 



Centre for Distance Education                                         6.16                                  Acharya Nagarjuna University  

 

First package: 
package First; 
public class University { 
  int id = 1; 
  protected void print() { 
    System.out.println("This is the University class"); 
  } 
} 

 
Second package: 
package Second; 
import First.University; 
class MyProgs extends University { 
  public static void main(String[] args) { 
    University ob = new University(); 
    //This line will cause an error 
    ob.print(); 
 
    MyProgs ob1 = new MyProgs(); 
    //This line will not cause an error 
    ob1.print(); 
  } 
} 

 
The line ob.print() will cause an error because we cannot access the protected method outside 
its package, but we can access it by inheriting it in some other class of different packages, 
that's why ob1.print() will not cause any error. 
 
6.5.4 Public Access Modifier 
The public access modifier in Java means there are no restrictions on accessing the methods, 
classes, or instance members of a particular class. It allows access from any package and any 
class. A real-life example is setting a Facebook status to "public," allowing anyone on 
Facebook, whether a friend or not, to see it. This flexibility makes the public modifier useful 
for wide accessibility. 
 
Example 
Consider two packages named First and Second with two public classes. 
 
The University class of the First package contains one instance member and one method, i.e. 
print(). Both are of public type. Let's try to access them in another class of different packages, 
i.e. in the Second package. 
 
First package: 
package First; 
public class University { 
 
  //Instance member 
  public int id = 1; 
 
  //Class method 
  public void print() { 
    System.out.println("This is the University class"); 
  } 
} 

 
 



OOP with Java                                                       6.17                                                              Classes and Objects 

 

 
 

Second package: 
 
package Second; 
import First.University; 
public class MyProgs { 
  public static void main(String[] args) { 
    //Creating the instance of the University class 
    University ob = new University(); 
    //Accessing the instance member of University class 
    System.out.println(ob.id); //print 1 
    //This is the University class will print 
    ob.print(); 
  } 
} 

 
Output: 
1 
This is the University class 
 
We got the correct output, because we can access the public modifier's methods or instance 
variables in any class of the same or different package. 

 
Figure 6.4 summary of access modifiers 

 
6.6      CONSTRUCTORS 

 
A constructor in Java is a special type of method that is automatically invoked when an 

object of a class is created. The primary purpose of a constructor is to initialize the newly 
created object. It sets initial values for the object’s instance variables and performs any other 
setup or configuration that the object needs. 
 
6.6.1 Characteristics of Constructors 
1. Same Name as the Class: A constructor must have the same name as the class in which it 
resides. This is how the Java compiler identifies it as a constructor rather than a regular 
method. 
2. No Return Type: Constructors do not have a return type, not even 'void'. The lack of a 
return type distinguishes constructors from normal methods. 
3. Called Automatically: Constructors are automatically called when an object of the class is 
created using the 'new' keyword. 



Centre for Distance Education                                         6.18                                  Acharya Nagarjuna University  

 

4. Cannot be Called Explicitly: Unlike other methods, constructors cannot be called 
explicitly using the dot ('.') operator. They are invoked only during object creation. 
5. Can Be Overloaded: A class can have multiple constructors with different parameter lists 
(constructor overloading). This allows objects to be created in different ways with different 
initializations. 
6. No Inheritance: Constructors are not inherited by subclasses. However, a subclass can call 
a superclass constructor using the 'super' keyword. 
 
6.6.2 Types of Constructors 
1. Default Constructor (No-Argument Constructor) 
2. Parameterized Constructor 

 
      Figure 6.5 types of constructors 
 
6.6.2.1   Default Constructor (No-Argument Constructor) 
A default constructor is a constructor that takes no arguments. If a class does not explicitly 
define any constructor, the Java compiler automatically provides a default constructor. This 
default constructor initializes the object’s instance variables to their default values. 
 
Example: 
 
public class Car { 
    String model; 
    int year; 
 
    // Default constructor 
    public Car() { 
        model = "Unknown"; 
        year = 0; 
    } 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); 
        System.out.println("Year: " + year); 
    } 
 
    public static void main(String[] args) { 
        Car car = new Car();  // Calls the default constructor 
        car.displayInfo();  // Output: Model: Unknown, Year: 0 
    } 
} 
 

6.6.2.2     Parameterized Constructor 
A parameterized constructor is a constructor that takes one or more parameters. This type of 
constructor allows you to initialize objects with specific values when they are created. 
 

Constructor

default 
constructor

parameterized 
constructor



OOP with Java                                                       6.19                                                              Classes and Objects 

 

 
 

public class Car  
    String model; 
    int year; 
 
    // Parameterized constructor 
    public Car(String model, int year) { 
        this.model = model; 
        this.year = year; 
    } 
    public void displayInfo() { 
        System.out.println("Model: " + model); 
        System.out.println("Year: " + year); 
    } 
 
    public static void main(String[] args) { 
        Car car = new Car("Toyota", 2022);  // Calls the parameterized 
constructor 
        car.displayInfo();  // Output: Model: Toyota, Year: 2022 
    } 
} 
 

6.6.3   Constructor Overloading 
Constructor overloading in Java means having more than one constructor in a class with 
different parameter lists. This is useful when you want to provide multiple ways to initialize 
an object. 
 
Example: 
public class Car { 
    String model; 
    int year; 
 
    // Default constructor 
    public Car() { 
        model = "Unknown"; 
        year = 0; 
    } 
 
    // Parameterized constructor 
    public Car(String model, int year) { 
        this.model = model; 
        this.year = year; 
    } 
 
    public void displayInfo() { 
        System.out.println("Model: " + model); 
        System.out.println("Year: " + year); 
    } 
 
    public static void main(String[] args) { 
        Car car1 = new Car();  // Calls the default constructor 
        Car car2 = new Car("Honda", 2021);  // Calls the parameterized 
constructor 
        car1.displayInfo();  // Output: Model: Unknown, Year: 0 
        car2.displayInfo();  // Output: Model: Honda, Year: 2021 
    } 
} 
 

 



Centre for Distance Education                                         6.20                                  Acharya Nagarjuna University  

 

6.6.4 Calling a Superclass Constructor 
In a subclass, you can call a constructor of its superclass using the 'super' keyword. This is 
typically done when you want to extend the initialization process defined in the superclass. 
 
Example: 
public class Vehicle { 
    String type; 
 
    // Parameterized constructor 
    public Vehicle(String type) { 
        this.type = type; 
    } 
} 
 
public class Car extends Vehicle { 
    String model; 
 
    // Parameterized constructor 
    public Car(String type, String model) { 
        super(type);  // Calls the constructor of Vehicle class 
        this.model = model; 
    } 
 
    public void displayInfo() { 
        System.out.println("Type: " + type); 
        System.out.println("Model: " + model); 
    } 
 
    public static void main(String[] args) { 
        Car car = new Car("Sedan", "Toyota"); 
        car.displayInfo();  // Output: Type: Sedan, Model: Toyota 
    } 
} 
 

6.7   SUMMARY 
 

The chapter "Classes and Objects in Java" introduces the foundational concepts of 
object oriented programming in Java. It begins by explaining classes as blueprints for 
creating objects, which are instances of these classes, embodying the real-world entities. The 
chapter covers object creation, detailing how to instantiate objects using the new keyword 
and discusses various ways to initialize instance variables, which hold the state of an object.  

 
It explores access specifiers (public, protected, private, and default) that control the 

visibility and accessibility of class members, ensuring encapsulation and security. Lastly, the 
chapter delves into constructors, special methods used to initialize new objects, including 
both default and parameterized constructors, demonstrating how to provide initial values and 
set up necessary conditions for newly created objects 
 
6.8   TECHNICAL TERMS 
 
class, object, instance variable, private, public, protected, constructor 
 
 
 
 



OOP with Java                                                       6.21                                                              Classes and Objects 

 

 
 

6.9   SELF ASSESSMENT QUESTIONS 
 
Essay questions: 

1. What is a class in Java, and how does it relate to objects? 
2. How do you create an object in Java? Provide an example. 
3. What are instance variables, and how are they different from local variables? 
4. Explain the purpose of the private access specifier in Java. 
5. What is the difference between a default constructor and a parameterized constructor? 

  
Short Answer Questions:   
 

1. Describe the relationship between classes and objects in Java. Provide examples to 
illustrate your explanation. 

2. Discuss the importance of constructors in Java. How do constructors enhance object 
creation and initialization? Provide examples of different types of constructors and 
how they can be used in a Java program. 

3. Explain the concept of access specifiers in Java and how they contribute to 
encapsulation and data hiding with examples 

4. How do instance variables get initialized in Java? Discuss the different ways of 
initializing instance variables and the impact of each method on object behavior. 

 
6.10    SUGGESTED READINGS 
 

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”, 
McGraw Hill, 1st Edition, 2013.  

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 
2018.  

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education, 
Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:  

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.  
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition, 

2007.  
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd 

Edition, 2014 
 
 

Dr. U. SURYA KAMESWARI 
 



LESSON- 7 

INHERITANCE 
 
OBJECTIVES 
 
By the end of this chapter, you should be able to: 

 Understanding the Concept of Inheritance 
 Exploring Different Types of Inheritance 
 Applying Inheritance to Real-World Problems 
 Recognizing the Limitations of Inheritance 
 Define Key Inheritance Terminology 
 Create Simple Inheritance Hierarchies 
 Use the super Keyword Effectively 
 Apply Inheritance in Object-Oriented Design 

 
STRUCTURE 
 
7.1  Introduction 
7.2  Basic Syntax and Terminology           
7.3  Types of Inheritance 
7.4    Method Overriding 
7.5    Best Practices 
7.6    Case Study: Inheritance in a Real-World Application  
7.7    Summary 
7.8    Technical Terms  
7.9    Self-Assessment Questions 
7.10   Suggested Readings 
 
7.1 INTRODUCTION 
 

Inheritance is a fundamental concept in object-oriented programming that allows a new 
class to acquire the properties and behaviors of an existing class. By enabling one class (the 
subclass) to inherit fields and methods from another class (the superclass), inheritance promotes 
code reuse, simplifies code maintenance, and establishes a natural hierarchy among classes. 
This concept not only reduces redundancy but also facilitates the creation of more flexible and 
scalable programs, as it allows developers to build on existing code without modifying it 
directly. 
 
 Importance of Inheritance 

Inheritance is a core concept in object-oriented programming (OOP) that allows a new 
class to derive properties and behaviors from an existing class. In Java, inheritance enables one 
class, known as a subclass or child class, to inherit fields and methods from another class, 
referred to as a superclass or parent class. This mechanism not only promotes code reuse by 
allowing new classes to build upon existing ones but also establishes a hierarchical relationship 
between classes, reflecting real-world structures and relationships. Through inheritance, 
developers can create more modular, maintainable, and scalable software, as common 
functionality is centralized in super classes and extended or customized in subclasses. 
 
Inheritance is crucial in Java and object-oriented programming for several reasons: 



Centre for Distance Education                                  7.2                                         Acharya Nagarjuna University 

 Code Reusability: Inheritance allows developers to reuse existing code by creating new 
classes based on existing ones. This reduces redundancy and the effort required to write 
new code, as common functionality can be inherited from a superclass. 

 Logical Class Hierarchy: Inheritance helps organize code into a logical hierarchy, 
reflecting real-world relationships. For example, a "Vehicle" class can serve as a superclass 
for "Car," "Bike," and "Truck" subclasses, each inheriting common properties while 
introducing specific features. 

 Simplified Maintenance: When a change is made in the superclass, it automatically 
propagates to all subclasses, making code easier to maintain and update. This reduces the 
likelihood of errors and inconsistencies across the codebase. 

 Polymorphism: Inheritance enables polymorphism, where a subclass can be treated as an 
instance of its superclass. This allows for more flexible and dynamic code, as methods can 
be overridden in subclasses to provide specific implementations while maintaining a 
common interface. 

 Extensibility: Inheritance makes it easier to extend existing code. Developers can add new 
features or modify behaviors in subclasses without altering the original superclass code, 
ensuring that enhancements are made without disrupting existing functionality. 

 Encapsulation and Abstraction: Inheritance supports encapsulation by allowing a 
subclass to access protected and public members of the superclass while hiding its internal 
implementation details. It also aids in abstraction by allowing higher-level classes to 
represent general concepts, while subclasses provide concrete implementations. 

 
Overall, inheritance is a powerful tool that promotes efficient, organized, and scalable 

software development, making it an essential concept in Java and object-oriented 
programming. 

 
Fig 7.1 Importance of Inheritance 



OOP with Java                                                                 7.3                                                               Inheritance 

7.2 BASIC SYNTAX AND TERMINOLOGY  
 

In Java, inheritance is implemented using the extends keyword, which allows a class to 
inherit properties and behaviors from another class. Understanding the basic syntax and 
terminology is essential for effectively utilizing inheritance in your programs. 

 
 Superclass and Subclass 
 Superclass (Parent Class): The class from which properties and methods are inherited. It 

represents a more general concept in the hierarchy. 
o Example: In a class hierarchy where Vehicle is a superclass, it might define common 
attributes like speed and methods like move (). 
 Subclass (Child Class): The class that inherits from the superclass. It represents a more 

specific concept and can add new properties or override existing ones from the superclass. 
o Example: Car and Bike might be subclasses of Vehicle, inheriting speed and move () 
while adding specific attributes like numDoors for Car. 
 
 The extends Keyword 
 The extends keyword is used in the class declaration to signify that a class is inheriting 

from another class. 
o Syntax: 
class SubclassName extends SuperclassName { 
    // Additional fields and methods 
} 
o Example: 
class Vehicle { 
    int speed; 
    void move() { 
        System.out.println("Vehicle is moving"); 
    } 
                                             } 
class Car extends Vehicle { 
    int numDoors; 
    void display() { 
        System.out.println("Car has " + numDoors + " doors and moves at speed " + speed); 
    } 
} 
 
 The super Keyword 
 The super keyword is used in a subclass to refer to the superclass. It can be used to: 
o Call a superclass constructor: 
class Car extends Vehicle { 
    Car() { 
        super();  // Calls the constructor of Vehicle 
    } 
} 
o Access a superclass method: 
class Car extends Vehicle { 
    @Override 
    void move() { 
        super.move();  // Calls the move() method of Vehicle 



Centre for Distance Education                                  7.4                                         Acharya Nagarjuna University 

        System.out.println("Car is moving"); 
    } 
} 

 
 

Fig 7.2 Super Keyword in Java 
 
 Access Modifiers and Inheritance 

 Public: Public members of a superclass are accessible in the subclass. 
 Protected: Protected members are accessible in the subclass and within the same 

package. 
 Private: Private members are not accessible in the subclass. However, access can be 

provided through public or protected getter and setter methods. 
 Default (Package-Private): Members with no explicit access modifier (default) are 

accessible within the same package but not in subclasses outside the package. 
 
7.3 TYPES OF INHERITANCE 
 

In Java, inheritance allows a class to inherit properties and behaviors from another 
class. There are several types of inheritance, each defining a different way in which classes can 
relate to each other. However, Java does not support multiple inheritance (where a class inherits 
from more than one class) due to the complexity and ambiguity it can introduce. Below are the 
primary types of inheritance in Java shown in Figure 8.3 and details explained in below: 

 
 Single Inheritance: One class inherits from one superclass. 
 Multilevel Inheritance: A class inherits from a derived class, forming a chain of 

inheritance. 
 Hierarchical Inheritance: Multiple classes inherit from the same superclass. 
 Multiple Inheritance (Through Interfaces): A class implements multiple interfaces, 

allowing for multiple inheritance. 
 Hybrid Inheritance: A combination of different types of inheritance, typically 

implemented using interfaces. 



OOP with Java                                                                 7.5                                                               Inheritance 

 
Fig 7.3 Types of Inheritance 

 
 Single Inheritance 
Single inheritance is when a class inherits from only one superclass. This is the most common 
type of inheritance in Java. 
 Example: 
class Animal { 
    void eat() { 
        System.out.println("Animal is eating"); 
    } 
} 
 
class Dog extends Animal { 
    void bark() { 
        System.out.println("Dog is barking"); 
    } 
} 
In this example, the Dog class inherits from the Animal class. Dog can use the eat() method 
from Animal in addition to its own bark() method. 
 
 Multilevel Inheritance 
Multilevel inheritance occurs when a class is derived from another derived class, creating a 
chain of inheritance. 
 Example: 
class Animal { 
    void eat() { 
        System.out.println("Animal is eating"); 
    } 
} 
 
class Dog extends Animal { 
    void bark() { 
        System.out.println("Dog is barking"); 
    } 
} 



Centre for Distance Education                                  7.6                                         Acharya Nagarjuna University 

class Puppy extends Dog { 
    void weep() { 
        System.out.println("Puppy is weeping"); 
    } 
} 
Here, the Puppy class inherits from Dog, which in turn inherits from Animal. Puppy can use the 
eat() method from Animal and the bark() method from Dog, as well as its own weep() method. 
 
 Hierarchical Inheritance 
Hierarchical inheritance occurs when multiple classes inherit from the same superclass. 
 Example: 
class Animal { 
    void eat() { 
        System.out.println("Animal is eating"); 
    } 
} 
class Dog extends Animal { 
    void bark() { 
        System.out.println("Dog is barking"); 
    } 
} 
class Cat extends Animal { 
    void meow() { 
        System.out.println("Cat is meowing"); 
    } 
} 
In this example, both Dog and Cat classes inherit from the Animal class. Each subclass has its 
own specific methods (bark() and meow()) in addition to the inherited eat() method. 
 
 Multiple Inheritance  
Java does not support multiple inheritance through classes due to the "diamond problem" 
(ambiguity caused when a class inherits from two classes that have a method with the same 
signature). However, Java allows multiple inheritance through interfaces. 
 Example: 
interface Animal { 
    void eat(); 
} 
interface Pet { 
    void play(); 
} 
class Dog implements Animal, Pet { 
    @Override 
    public void eat() { 
        System.out.println("Dog is eating"); 
    } 
   @Override 
    public void play() { 
        System.out.println("Dog is playing"); 
    } 
} 



OOP with Java                                                                 7.7                                                               Inheritance 

Here, the Dog class implements two interfaces, Animal and Pet, effectively achieving multiple 
inheritance. 
 
 Hybrid Inheritance  
Hybrid inheritance is a combination of two or more types of inheritance. In Java, hybrid 
inheritance is not supported directly because it often involves multiple inheritance, which can 
lead to ambiguity. However, it can be achieved using interfaces. 
 Example: 
interface Animal { 
    void eat(); 
} 
class Mammal { 
    void sleep() { 
        System.out.println("Mammal is sleeping"); 
    } 
} 
class Dog extends Mammal implements Animal { 
    @Override 
    public void eat() { 
        System.out.println("Dog is eating"); 
    } 
} 
In this example, Dog class inherits from Mammal (single inheritance) and implements Animal 
interface (multiple inheritance through interfaces), creating a hybrid inheritance scenario. 
 
Table 7.1 Diffrences between various types of inheritance 

Type Description 

 Single Inheritance 
 

 a derived class is created from a 
single base class. 

 Multi-level Inheritance 
 

 a derived class is created from 
another derived class. 

 Multiple Inheritance 
 

 a derived class is created from more 
than one base class 

 Hierarchical Inheritance 
 

 more than one derived class is 
created from a single base class 

 Hybrid Inheritance 
 

 a combination of more than one 
inheritance 

 
7.4  METHOD OVERLOADING 
 

Method overloading occurs when two or more methods in the same class have the same 
name but different parameter lists (different in number, type, or order of parameters). The 
compiler determines which method to call based on the method signature at compile time. 
 
 



Centre for Distance Education                                  7.8                                         Acharya Nagarjuna University 

Example of Method Overloading: 
class MathOperation { 
    // Method to add two integers 
    int add(int a, int b) { 
        return a + b; 
    } 
        // Overloaded method to add three integers 
    int add(int a, int b, int c) { 
        return a + b + c; 
    } 
 // Overloaded method to add two double values 
    double add(double a, double b) { 
        return a + b; 
    } 
} 
public class TestOverloading { 
    public static void main(String[] args) { 
        MathOperation mo = new MathOperation(); 
                // Calling the method with two integers 
        System.out.println("Sum of two integers: " + mo.add(10, 20)); 
                // Calling the method with three integers 
        System.out.println("Sum of three integers: " + mo.add(10, 20, 30)); 
                // Calling the method with two double values 
        System.out.println("Sum of two doubles: " + mo.add(10.5, 20.5)); 
    } 
} 
 
Output: 
Sum of two integers: 30 
Sum of three integers: 60 
Sum of two doubles: 31.0 
In this example, the add method is overloaded to handle different types of input. The correct 
method is selected at compile time based on the arguments passed. 
 
7.5 BEST PRACTICES 
 

Inheritance is a powerful feature in Java that allows a class to inherit properties and 
behaviors from another class, promoting code reuse and organization. However, it can also lead 
to complexities and potential pitfalls if not used carefully. Here are some best practices to 
follow when using inheritance in Java and described in Fig 7.4: 



OOP with Java                                                                 7.9                                                               Inheritance 

 
Fig 7.4 Best Practices of Inheritance 

 
 Favor Composition Over Inheritance 

 Composition involves building classes by including instances of other classes that 
implement the desired functionality. This is often more flexible and less error-prone 
than inheritance. 

 Why? Inheritance tightly couples the parent and child classes, making it harder to 
change one without affecting the other. Composition allows for more modular, 
maintainable, and reusable code. 

Example: 
class Engine { 
    void start() { 
        System.out.println("Engine started"); 
    } 
} 
 
class Car { 
    private Engine engine; 
 
    Car() { 
        engine = new Engine(); 
    } 
 
    void start() { 
        engine.start(); 
        System.out.println("Car started"); 
    } 
} 
Instead of inheriting from an Engine class, the Car class uses composition to include an Engine 
instance. 



Centre for Distance Education                                  7.10                                         Acharya Nagarjuna University 

 Use Inheritance for "Is-A" Relationships 
 Ensure that the relationship between the superclass and subclass genuinely reflects an 

"is-a" relationship. The subclass should be a more specific version of the superclass. 
 Why? Misusing inheritance can lead to improper design where subclasses inherit 

methods or properties that do not logically apply to them, leading to confusion and 
maintenance difficulties. 

 Example: 
o A Dog class should inherit from an Animal class because a dog "is an" animal. 
o Avoid scenarios like Square inheriting from Rectangle if their relationship isn't truly "is-

a." 
 

 Keep Class Hierarchies Shallow 
 Avoid deep inheritance hierarchies (i.e., many levels of inheritance). Prefer flatter class 

structures where possible. 
 Why? Deep hierarchies can lead to increased complexity, making the code harder to 

understand, maintain, and debug. Shallow hierarchies are easier to manage. 
 Example: 

o If you find yourself creating multiple levels of inheritance, consider whether some of the 
intermediate classes can be merged or if composition can replace some inheritance. 
 

 Avoid Overriding Methods Unnecessarily 
 Only override methods when there is a clear need to change or extend the behavior of 

the superclass method. 
 Why? Unnecessary overriding can introduce bugs and make the code harder to follow. 

If the superclass method behavior is sufficient, there's no need to override it. 
 Example: 

o If a Vehicle class has a startEngine() method that works for all vehicles, subclasses like 
Car or Bike should only override it if they need specific behavior. 

 
 Use the super Keyword Carefully 

 Use the super keyword to access methods and constructors of the superclass, but do so 
judiciously. 

 Why? Misusing super can lead to unexpected behavior, especially if the superclass 
method is not intended to be extended in a particular way. 

 Example: 
class Animal { 
    void sound() { 
        System.out.println("Animal sound"); 
    } 
} 
 
class Dog extends Animal { 
    @Override 
    void sound() { 
        super.sound();  // Calls the superclass method 
        System.out.println("Dog barks"); 
    } 
} 
 
 



OOP with Java                                                                 7.11                                                               Inheritance 

 Mark Methods and Classes as final When Necessary 
 Use the final keyword to prevent classes from being extended or methods from being 

overridden when it’s not appropriate for them to be modified. 
 Why? Preventing further extension of a class or method helps to maintain the integrity 

of your design and ensures that certain behaviors are not unintentionally altered. 
 Example: 

public final class MathUtils { 
    public static final double PI = 3.14159; 
 
 Ensure Proper Use of Constructors 

 Ensure that subclass constructors call the appropriate superclass constructor, especially 
when the superclass does not have a default constructor. 

 Why? Failing to properly initialize a superclass can lead to incomplete object creation 
and potential runtime errors. 

 Example: 
class Animal { 
    String name; 
    Animal(String name) { 
        this.name = name; 
    } 
} 
class Dog extends Animal { 
    Dog(String name) { 
        super(name);  // Call to superclass constructor 
    } 
} 
 
 Be Cautious with Protected Members 

 Use the protected access modifier carefully, as it allows subclasses to access superclass 
members directly. 

 Why? Overusing protected can expose internal implementation details that should 
remain encapsulated, leading to tight coupling and potential misuse. 

 Example: 
o Prefer private members with appropriate getter/setter methods over protected members to 

maintain encapsulation. 
 

 Use Abstract Classes for Common Functionality 
 Use abstract classes when you want to define common behavior that multiple 

subclasses should share while allowing for specific implementations in each subclass. 
 Why? Abstract classes provide a way to enforce certain methods while still allowing for 

flexibility in subclass behavior. 
 Example: 

abstract class Animal { 
    abstract void sound(); 
 
    void breathe() { 
        System.out.println("Animal is breathing"); 
    } 
} 
class Dog extends Animal { 



Centre for Distance Education                                  7.12                                         Acharya Nagarjuna University 

    @Override 
    void sound() { 
        System.out.println("Dog barks"); 
    } 
} 
 

When using inheritance in Java, it is essential to follow best practices to ensure that 
your code remains maintainable, flexible, and understandable. By favoring composition over 
inheritance, keeping hierarchies shallow, and carefully managing method overrides and access 
modifiers, you can avoid common pitfalls and make the most of inheritance’s benefits. Proper 
use of abstract classes, constructors, and documentation further enhances the effectiveness and 
clarity of your inheritance-based designs. 
 
7.6 CASE STUDY: INHERITANCE IN A REAL-WORLD APPLICATION 
 

Suppose you are developing a Vehicle Management System for a car rental company. 
The system needs to manage different types of vehicles, such as cars, trucks, and 
motorcycles. These vehicles share some common characteristics but also have specific 
features and behaviors unique to each type. Using inheritance in this scenario allows you to 
model the commonalities and differences efficiently. 
 
class Vehicle { 
    private String make; 
    private String model; 
    private int year; 
    private String color; 
    private String registrationNumber; 
 
    public Vehicle(String make, String model, int year, String color, String 
registrationNumber) { 
        this.make = make; 
        this.model = model; 
        this.year = year; 
        this.color = color; 
        this.registrationNumber = registrationNumber; 
    } 
 
    public void displayDetails() { 
        System.out.println("Make: " + make); 
        System.out.println("Model: " + model); 
        System.out.println("Year: " + year); 
        System.out.println("Color: " + color); 
        System.out.println("Registration Number: " + registrationNumber); 
    } 
 
    public double calculateRentalPrice() { 
        return 50.0;  // Base rental price for any vehicle 
    } 
} 
 



OOP with Java                                                                 7.13                                                               Inheritance 

class Car extends Vehicle { 
    private int numberOfDoors; 
    private boolean isConvertible; 
 
    public Car(String make, String model, int year, String color, String registrationNumber, int 
numberOfDoors, boolean isConvertible) { 
        super(make, model, year, color, registrationNumber); 
        this.numberOfDoors = numberOfDoors; 
        this.isConvertible = isConvertible; 
    } 
 
    @Override 
    public void displayDetails() { 
        super.displayDetails(); 
        System.out.println("Number of Doors: " + numberOfDoors); 
        System.out.println("Convertible: " + (isConvertible ? "Yes" : "No")); 
    } 
 
    @Override 
    public double calculateRentalPrice() { 
        double basePrice = super.calculateRentalPrice(); 
        return isConvertible ? basePrice + 30 : basePrice + 20; 
    } 
} 
class Truck extends Vehicle { 
    private double cargoCapacity; 
    private boolean hasTrailer; 
 
    public Truck(String make, String model, int year, String color, String registrationNumber, 
double cargoCapacity, boolean hasTrailer) { 
        super(make, model, year, color, registrationNumber); 
        this.cargoCapacity = cargoCapacity; 
        this.hasTrailer = hasTrailer; 
    } 
 
    @Override 
    public void displayDetails() { 
        super.displayDetails(); 
        System.out.println("Cargo Capacity: " + cargoCapacity + " tons"); 
        System.out.println("Has Trailer: " + (hasTrailer ? "Yes" : "No")); 
    } 
 
    @Override 
    public double calculateRentalPrice() { 
        double basePrice = super.calculateRentalPrice(); 
        return basePrice + (hasTrailer ? 50 : 40); 
    } 
} 
class Motorcycle extends Vehicle { 
    private int engineCapacity; 



Centre for Distance Education                                  7.14                                         Acharya Nagarjuna University 

    public Motorcycle(String make, String model, int year, String color, String 
registrationNumber, int engineCapacity) { 
        super(make, model, year, color, registrationNumber); 
        this.engineCapacity = engineCapacity; 
    } 
 
    @Override 
    public void displayDetails() { 
        super.displayDetails(); 
        System.out.println("Engine Capacity: " + engineCapacity + " cc"); 
    } 
 
    @Override 
    public double calculateRentalPrice() { 
        double basePrice = super.calculateRentalPrice(); 
        return basePrice + (engineCapacity > 1000 ? 25 : 15); 
    } 
} 
public class VehicleManagementSystem { 
    public static void main(String[] args) { 
        Vehicle car = new Car("Toyota", "Camry", 2020, "Red", "ABC123", 4, false); 
        Vehicle truck = new Truck("Ford", "F-150", 2019, "Blue", "XYZ789", 5.0, true); 
        Vehicle motorcycle = new Motorcycle("Harley-Davidson", "Sportster", 2021, "Black", 
"MNO456", 1200); 
 
        System.out.println("Car Details:"); 
        car.displayDetails(); 
        System.out.println("Rental Price: $" + car.calculateRentalPrice()); 
 
        System.out.println("\nTruck Details:"); 
        truck.displayDetails(); 
        System.out.println("Rental Price: $" + truck.calculateRentalPrice()); 
 
        System.out.println("\nMotorcycle Details:"); 
        motorcycle.displayDetails(); 
        System.out.println("Rental Price: $" + motorcycle.calculateRentalPrice()); 
    } 
} 
 
OUTPUT: 
Car Details: 
Make: Toyota 
Model: Camry 
Year: 2020 
Color: Red 
Registration Number: ABC123 
Number of Doors: 4 
Convertible: No 
Rental Price: $70.0 
 



OOP with Java                                                                 7.15                                                               Inheritance 

Truck Details: 
Make: Ford 
Model: F-150 
Year: 2019 
Color: Blue 
Registration Number: XYZ789 
Cargo Capacity: 5.0 tons 
Has Trailer: Yes 
Rental Price: $100.0 
 
Motorcycle Details: 
Make: Harley-Davidson 
Model: Sportster 
Year: 2021 
Color: Black 
Registration Number: MNO456 
Engine Capacity: 1200 cc 
Rental Price: $75.0 
 

This case study illustrates how inheritance in Java can be effectively used to model 
real-world scenarios. By using inheritance, you can create a flexible, reusable, and 
maintainable codebase that is easy to extend and adapt to new requirements. The Vehicle 
Management System demonstrates how different vehicle types share common features 
through a base class while allowing specific behaviors through subclassing. This approach 
reduces code duplication, enhances clarity, and provides a strong foundation for future 
development. 
 
7.7 SUMMARY 
 

Inheritance in Java is a core concept of object-oriented programming that allows one 
class (the subclass) to inherit fields and methods from another class (the superclass). This 
enables code reuse and the creation of a hierarchical class structure, where subclasses can 
extend or modify the behaviors of the superclass. Inheritance supports the "is-a" relationship, 
ensuring that subclasses can be used interchangeably with their superclass, promoting 
flexibility and maintainability in code design. It also allows for method overriding, enabling 
polymorphism, where the same method can have different behaviors in different classes. 
 
7.8 TECHNICAL TERMS 
 

1. Super 

2. extends 

3. single level 

4. Hybrid 

5. Multiple 

6. Method Overriding 

 
 



Centre for Distance Education                                  7.16                                         Acharya Nagarjuna University 

7.9 SELF ASSESSMENT QUESTIONS 
 
Essay questions: 
 

1. Explain the concept of inheritance in Java and how it promotes code reuse and 
organization. Provide examples to illustrate your explanation. 

2. Discuss the differences between method overloading and method overriding in the 
context of inheritance. How does Java handle these concepts at compile-time and 
runtime? 

3. Describe how the super keyword is used in Java to access superclass methods and 
constructors. Provide examples showing its role in constructor chaining and method 
invocation. 

4. What are the benefits and potential pitfalls of using inheritance in Java? Discuss the 
concept of favoring composition over inheritance and provide examples to support 
your argument. 

5. Explain how the final keyword can be used to prevent inheritance and method 
overriding in Java. What are the implications of marking a class or method as final? 

 
Short questions:  
 

1. What is inheritance in Java? 

2. How does the extends keyword work in Java? 

3. What is the difference between method overloading and method overriding? 

4. What is the purpose of the super keyword in Java? 

5. How does the final keyword affect inheritance?  

 
7.10 SUGGESTED READINGS 
 

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021), McGraw-
Hill Education 

2.  "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly Media 
3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley Professional 

 
 
         Dr. KAMPA LAVANYA 



LESSON- 8 

POLYMORPHISM 
 
OBJECTIVES 
 
By the end of this chapter, you should be able to: 

 execute a block of code multiple times, reducing redundancy and ensuring that 
repetitive tasks are automated.  

 systematically access each element in a collection or array, enabling operations such 
as processing, searching, or modifying data.  

 dynamically control the flow of execution based on conditions, allowing for flexible 
and adaptive programming.  

 handle large datasets or perform calculations repeatedly without manually duplicating 
code.  

 manage and update counters, such as for indexing elements, tracking iterations, or 
controlling loops. 

These objectives highlight the importance of loop statements in Java for creating efficient, 
readable, and maintainable code. 
 
STRUCTURE 
 
8.1    Introduction 
8.2   Importance of Polymorphism In Java 
8.3    Compile time Polymorphism 
84     Runtime Polymorphism 
8.5    Polymorphism with Interface 
8.6    Polymorphism and Abstract Classes 
8.7    Advantages and Disadvantages of Polymorphism 

  8.7.1 Advantages 
  8.7.2 Disadvantages 

8.8    Common Mistakes and Best Practices 
  8.8.1 Common Mistakes 
  8.8.2 Best Practices 

8.9    Summary 
8.10  Technical Terms  
8.11   Self-Assessment Questions 
8.12   Suggested Readings 
 
8.1 INTRODUCTION 
 

Polymorphism, a core concept in object-oriented programming, refers to the ability of a 
single function, method, or operator to operate in different ways based on the context. In Java, 
polymorphism allows objects of different classes to be treated as objects of a common 
superclass, enabling the same method to behave differently depending on the object it is acting 
upon. This feature enhances flexibility and reusability in code, making it easier to extend and 
maintain. Through polymorphism, Java developers can write more generic and scalable 
programs, where specific behaviors can be altered dynamically at runtime without altering the 
code that invokes these behaviors. 



Centre for Distance Education                                        8.2                                   Acharya Nagarjuna University 

8.2 IMPORTANCE OF POLYMORPHISM IN JAVA 
 

Polymorphism is a cornerstone of object-oriented programming (OOP) in Java, playing 
a crucial role in the language's design and usage. Here are the key reasons why polymorphism 
is important in Java and are shown in Figure 8.1: 

 
 Code Reusability: Polymorphism allows developers to use a single interface to represent 

different types of objects. This promotes code reusability as the same code can operate on 
objects of different classes without modification, reducing redundancy and simplifying 
maintenance. 

 Flexibility and Extensibility: Polymorphism enables code to be more flexible and 
extensible. By programming to interfaces or base classes, new subclasses or 
implementations can be introduced with minimal changes to existing code. This flexibility 
allows for easier updates and scaling of applications. 

 Dynamic Method Dispatch: With polymorphism, Java supports dynamic method 
dispatch, where the method to be executed is determined at runtime. This allows for more 
dynamic and responsive applications, where behavior can be altered based on the actual 
object type that the reference variable points to at runtime. 

 Simplified Code Management: Polymorphism simplifies code management by reducing 
the complexity associated with conditional statements or type checks. Instead of writing 
multiple conditional branches to handle different types, a single method call can be used, 
and polymorphism ensures the correct method is executed based on the object's type. 

 Enhanced Maintainability: Since polymorphism leads to a more modular code structure, 
it enhances the maintainability of the software. Changes in one part of the system (e.g., 
introducing a new subclass) can be isolated from other parts, leading to fewer bugs and 
easier testing and debugging. 

 Design Patterns and Frameworks: Polymorphism is a foundational concept behind 
many design patterns and frameworks in Java, such as the Strategy Pattern, Observer 
Pattern, and Dependency Injection. These patterns leverage polymorphism to create 
flexible and reusable code structures, essential for building robust enterprise-level 
applications.  



OOP  with Java                                               8.3                               Polymorphism 

 
Fig 8.1 Importance of Polymorphism with various factors 
 
Example: 
interface Animal { 
    void sound(); 
} 
class Dog implements Animal { 
    public void sound() { 
        System.out.println("Woof"); 
    } 
} 
 
class Cat implements Animal { 
    public void sound() { 
        System.out.println("Meow"); 
    } 
 
8.3 COMPILE-TIME POLYMORPHISM  
 
Polymorphism can be classified into two types and described in Figure 8.2. 
1. Compile-Time Polymorphism 
2. Run-Time Polymorphism 



Centre for Distance Education                                        8.4                                   Acharya Nagarjuna University 

 
Fig 8.2 Polymorphism classification in Java 

 
Compile-time polymorphism, also known as static polymorphism, is a type of 

polymorphism that is resolved during the compilation of the program. In Java, compile-time 
polymorphism is achieved through method overloading and operator overloading (although 
Java does not support user-defined operator overloading). This form of polymorphism allows a 
single method or operator to behave differently based on the parameters or context in which it 
is used. 

 
 Method Overloading 
Method overloading occurs when two or more methods in the same class have the same name 
but different parameter lists (different in number, type, or order of parameters). The compiler 
determines which method to call based on the method signature at compile time. 
 
Example of Method Overloading: 
class MathOperation { 
    // Method to add two integers 
    int add(int a, int b) { 
        return a + b; 
    } 
        // Overloaded method to add three integers 
    int add(int a, int b, int c) { 
        return a + b + c; 
    } 
 // Overloaded method to add two double values 
    double add(double a, double b) { 
        return a + b; 
    } 
} 
public class TestOverloading { 
    public static void main(String[] args) { 
        MathOperation mo = new MathOperation(); 
                // Calling the method with two integers 
        System.out.println("Sum of two integers: " + mo.add(10, 20)); 



OOP  with Java                                               8.5                               Polymorphism 

                // Calling the method with three integers 
        System.out.println("Sum of three integers: " + mo.add(10, 20, 30)); 
                // Calling the method with two double values 
        System.out.println("Sum of two doubles: " + mo.add(10.5, 20.5)); 
    } 
} 
 
Output: 
Sum of two integers: 30 
Sum of three integers: 60 
Sum of two doubles: 31.0 
In this example, the add method is overloaded to handle different types of input. The correct 
method is selected at compile time based on the arguments passed. 
 
Advantages of Compile-time Polymorphism: 

1. Improved Code Readability: By using the same method name for different types of 
operations, code becomes more intuitive and easier to understand. 

2. Enhanced Performance: Since the method to be called is determined at compile time, 
there is no overhead associated with dynamic method dispatch. 

3. Simplified Maintenance: Overloading allows related operations to be grouped together 
under a single method name, making it easier to maintain and update the code. 

 
Limitations of Compile-time Polymorphism: 

1. Limited Flexibility: Since the method selection is done at compile time, it lacks the 
flexibility of runtime polymorphism, where decisions can be made dynamically based 
on actual object types. 

2. No User-defined Operator Overloading: Java does not allow user-defined operator 
overloading, unlike some other languages like C++, which limits the scope of compile-
time polymorphism. 

 
Compile-time polymorphism in Java is a powerful tool for creating methods that can handle 

different data types or numbers of parameters while maintaining a clean and readable codebase. 
It is resolved during the compilation process, which enhances performance but offers less 
flexibility compared to runtime polymorphism. Understanding and effectively using method 
overloading can greatly improve the design and functionality of Java programs. 

 
8.4 RUNTIME POLYMORPHISM  
 

Runtime polymorphism, also known as dynamic polymorphism, is a type of 
polymorphism that is resolved during the execution of a program. In Java, runtime 
polymorphism is achieved through method overriding, where a subclass provides a specific 
implementation of a method that is already defined in its superclass. The decision of which 
method to invoke is made at runtime, based on the actual object being referred to by the 
reference variable. 
 

 Method Overriding 
 

Method overriding occurs when a subclass has a method with the same name, return type, 
and parameters as a method in its superclass. The overriding method in the subclass provides 
a specific implementation that is different from the one in the superclass. 
 



Centre for Distance Education                                        8.6                                   Acharya Nagarjuna University 

Key Points of Method Overriding: 
 The method in the child class must have the same name, return type, and parameters 

as in the parent class. 
 The @Override annotation is often used to indicate that a method is intended to 

override a method in the superclass. 
 The access level of the overriding method cannot be more restrictive than that of the 

method in the superclass. 
 Only instance methods can be overridden; static methods belong to the class, not 

instances, and hence cannot be overridden but can be hidden. 
 
Example of Runtime Polymorphism 
class Animal { 
    void sound() { 
        System.out.println("Animal makes a sound"); 
    } 
} 
 
class Dog extends Animal { 
    @Override 
    void sound() { 
        System.out.println("Dog barks"); 
    } 
} 
 
class Cat extends Animal { 
    @Override 
    void sound() { 
        System.out.println("Cat meows"); 
    } 
} 
 
public class TestPolymorphism { 
    public static void main(String[] args) { 
        Animal myAnimal; 
         
        myAnimal = new Dog(); 
        myAnimal.sound();  // Outputs: Dog barks 
         
        myAnimal = new Cat(); 
        myAnimal.sound();  // Outputs: Cat meows 
    } 
} 
 
Output: 
Dog barks 
Cat meows 
 
In this example, the sound() method is overridden in both the Dog and Cat classes. When an 
Animal reference variable points to a Dog object, the sound() method of the Dog class is 
invoked. Similarly, when the same reference points to a Cat object, the sound() method of the 



OOP  with Java                                               8.7                               Polymorphism 

Cat class is invoked. This behavior demonstrates runtime polymorphism, where the method 
call is resolved based on the actual object type at runtime. 
 

 Dynamic Method Dispatch 
 
Dynamic method dispatch is the mechanism by which a call to an overridden method is 
resolved at runtime rather than compile-time. It is the backbone of runtime polymorphism in 
Java. This mechanism allows Java to achieve runtime polymorphism by determining the 
appropriate method to execute based on the actual object type that the reference variable is 
pointing to and complete idea is described in Figure 8.3. 

 
           Fig 8.3 Dynamic Dispatch Method for Animal -Dog Relation 
 
Example of Dynamic Method Dispatch: 
class Animal { 
    void sound() { 
        System.out.println("Animal sound"); 
    } 
} 
 
class Dog extends Animal { 
    @Override 
    void sound() { 
        System.out.println("Dog barks"); 
    } 
} 
 
class TestDispatch { 
    public static void main(String[] args) { 
        Animal myAnimal = new Dog();  // Reference type is Animal, but object is Dog 
        myAnimal.sound();  // Outputs: Dog barks 
    } 
} 
 
Here, although the reference variable myAnimal is of type Animal, the actual object is of 
type Dog. At runtime, the JVM determines that the sound() method of the Dog class should 
be called, not the Animal class’s method. This is dynamic method dispatch in action. 

 



Centre for Distance Education                                        8.8                                   Acharya Nagarjuna University 

Advantages of Runtime Polymorphism 
 

1. Flexibility and Extensibility: Allows a program to choose the appropriate method at 
runtime based on the actual object, making it easier to extend and maintain. 

2. Code Reusability: Common code can be written in the superclass, and specific behavior 
can be provided in subclasses, promoting reuse and reducing redundancy. 

3. Design Patterns and Frameworks: Runtime polymorphism is fundamental to many 
design patterns and frameworks, enabling features like dependency injection and event 
handling. 

 
Disadvantages of Runtime Polymorphism 
 

1. Performance Overhead: Since method resolution occurs at runtime, there may be a 
slight performance overhead compared to compile-time polymorphism. 

2. Complexity in Debugging: Debugging issues related to runtime polymorphism can be 
more challenging due to the dynamic nature of method invocation. 

 

Runtime polymorphism in Java allows methods to behave differently based on the actual 
object at runtime. It is primarily achieved through method overriding and dynamic method 
dispatch, enabling flexible and extensible code. While it offers significant benefits in terms of 
maintainability and design, it also introduces some performance overhead and complexity. 
Understanding and effectively utilizing runtime polymorphism is essential for writing robust 
and scalable Java applications. 
 
 Interface Animal: This interface declares a single method, make Sound(), which will be 

implemented by various classes. 
 
 Classes Dog, Cat, and Cow: These classes implement the Animal interface, providing 

their own version of the make Sound() method. 
 
 Polymorphism in Action: In the Main class, the reference my Animal is of type Animal 

(the interface). This reference is then pointed to different objects (Dog, Cat, and Cow). 
Even though the reference type is Animal, the method that gets called is determined by 
the actual object type that my Animal refers to at runtime. 

 
Benefits of Using Interfaces for Polymorphism 
1. Flexibility: Interfaces allow different classes to implement the same set of methods, 

enabling flexible and extensible designs. You can add new implementations without 
modifying existing code. 

2. Decoupling: Using interfaces helps decouple code, meaning that the code using the 
interface doesn't need to know about the concrete classes that implement the interface. 

3. Interchangeability: Objects of different classes can be treated as objects of a common 
interface type, allowing them to be used interchangeably. 
 

4. Real-World Example 
Consider a payment system where different payment methods (e.g., Credit Card, PayPal, 

Bank Transfer) implement a common Payment interface. The Payment interface might 
declare a method process Payment(), and each payment method class would provide its own 
implementation. This way, the system can process different types of payments without 
knowing the specifics of each payment method, achieving polymorphism. 



OOP  with Java                                               8.9                               Polymorphism 

interface Payment { 
    void processPayment(double amount); 
} 
 
class CreditCard implements Payment { 
    public void processPayment(double amount) { 
        System.out.println("Processing credit card payment of $" + amount); 
    } 
} 
 
class PayPal implements Payment { 
    public void processPayment(double amount) { 
        System.out.println("Processing PayPal payment of $" + amount); 
    } 
} 
 
class BankTransfer implements Payment { 
    public void processPayment(double amount) { 
        System.out.println("Processing bank transfer of $" + amount); 
    } 
} 
 
public class PaymentProcessor { 
    public void process(Payment payment, double amount) { 
        payment.processPayment(amount); 
    } 
 
    public static void main(String[] args) { 
        PaymentProcessor processor = new PaymentProcessor(); 
 
        Payment creditCard = new CreditCard(); 
        Payment payPal = new PayPal(); 
        Payment bankTransfer = new BankTransfer(); 
 
        processor.process(creditCard, 100.0); 
        processor.process(payPal, 200.0); 
        processor.process(bankTransfer, 300.0); 
    } 
} 
 
In this example, the PaymentProcessor can process any payment method that implements the 
Payment interface, demonstrating the power of polymorphism through interfaces. 
By leveraging interfaces, you can design systems that are modular, easy to maintain, and 
adaptable to change. 
 
8.5 POLYMORPHISM WITH INTERFACES  
 

Polymorphism is a fundamental concept in object-oriented programming (OOP) that 
allows objects to be treated as instances of their parent class or interface. In Java, 
polymorphism can be achieved in several ways, one of which is through interfaces. 



Centre for Distance Education                                        8.10                                   Acharya Nagarjuna University 

Understanding Polymorphism with Interfaces 
 
 What is an Interface? 
An interface in Java is a reference type, similar to a class, that can contain only constants, 
method signatures, default methods, static methods, and nested types. Interfaces cannot 
contain instance fields, constructors, or method implementations (other than default 
methods). A class or another interface can implement an interface. 
 
 Polymorphism through Interfaces 
When a class implements an interface, it agrees to perform the specific behaviors defined by 
the interface. Polymorphism is achieved because a single action can behave differently based 
on the object that implements the interface. 
 
Example: Polymorphism using Interfaces 
Consider the following example where polymorphism is demonstrated using an interface. 
// Define an interface 
interface Animal { 
    void makeSound(); 
} 
 
// Implement the interface in different classes 
class Dog implements Animal { 
    public void makeSound() { 
        System.out.println("Woof"); 
    } 
} 
 
class Cat implements Animal { 
    public void makeSound() { 
        System.out.println("Meow"); 
    } 
} 
 
class Cow implements Animal { 
    public void makeSound() { 
        System.out.println("Moo"); 
    } 
} 
 
// Demonstrate polymorphism with interfaces 
public class Main { 
    public static void main(String[] args) { 
        // Declare an interface type reference 
        Animal myAnimal; 
 
        // Point the reference to different objects 
        myAnimal = new Dog(); 
        myAnimal.makeSound();  // Outputs: Woof 
 
        myAnimal = new Cat(); 



OOP  with Java                                               8.11                               Polymorphism 

        myAnimal.makeSound();  // Outputs: Meow 
 
        myAnimal = new Cow(); 
        myAnimal.makeSound();  // Outputs: Moo 
    } 
} 
 
8.6 POLYMORPHISM AND ABSTRACT CLASSES  
 

Polymorphism is one of the core principles of object-oriented programming (OOP), 
and it allows objects to be treated as instances of their parent class or interface, rather than 
their actual derived class. In Java, polymorphism can also be achieved through abstract 
classes. 
Understanding Polymorphism with Abstract Classes is shown in Figure 8.4 
 

 
 

Fig 8.4. Interface and Abstract class implementation 
 

 What is an Abstract Class? 
An abstract class in Java is a class that cannot be instantiated on its own and is intended to be 
subclassed. It can contain abstract methods (methods without a body) as well as concrete 
methods (methods with a body). Abstract classes are used to define a common interface for a 
group of related classes while also allowing for some level of implementation reuse. 
 
 Polymorphism through Abstract Classes 
When a class inherits from an abstract class and provides implementations for the abstract 
methods, polymorphism is achieved because the base type (the abstract class) can be used to 
reference objects of the derived types. 
 
Example: Polymorphism using Abstract Classes 
Consider the following example to understand how polymorphism works with abstract 
classes: 
// Define an abstract class 



Centre for Distance Education                                        8.12                                   Acharya Nagarjuna University 

abstract class Animal { 
    // Abstract method (does not have a body) 
    abstract void makeNoise(); 
     
    // Concrete method 
    void eat() { 
        System.out.println("This animal is eating."); 
    } 
} 
 
// Subclasses provide implementations for the abstract method 
class Dog extends Animal { 
    @Override 
    void makeNoise () { 
        System.out.println("Woof"); 
    } 
} 
 
class Cat extends Animal { 
    @Override 
    void makeNoise () { 
        System.out.println("Meow"); 
    } 
} 
 
class Cow extends Animal { 
    @Override 
    void makeNoise () { 
        System.out.println("Moo"); 
    } 
} 
 
// Demonstrate polymorphism with abstract classes 
public class Main { 
    public static void main(String[] args) { 
        // Declare an abstract class type reference 
        Animal myAnimal; 
 
        // Point the reference to different objects 
        myAnimal = new Dog(); 
        myAnimal. makeNoise ();  // Outputs: Woof 
        myAnimal.eat();        // Outputs: This animal is eating. 
 
        myAnimal = new Cat(); 
        myAnimal. makeNoise ();  // Outputs: Meow 
        myAnimal.eat();        // Outputs: This animal is eating. 
 
        myAnimal = new Cow(); 
        myAnimal. makeNoise ();  // Outputs: Moo 
        myAnimal.eat();        // Outputs: This animal is eating. 



OOP  with Java                                               8.13                               Polymorphism 

    } 
} 
 
 Abstract Class Animal: This abstract class contains one abstract method, make Sound (), 
and one concrete method, eat (). The make Sound () method must be implemented by any 
subclass of Animal. 
 Classes Dog, Cat, and Cow: These classes extend the Animal class and provide specific 
implementations for the make Sound () method. 
 Polymorphism in Action: In the Main class, the reference my Animal is of type Animal 
(the abstract class). This reference can be assigned to any subclass object (Dog, Cat, or Cow). 
The method make Sound () called on my Animal is determined by the actual object type that 
my Animal refers to at runtime. 
 
Benefits of Using Abstract Classes for Polymorphism 
1. Shared Code and Reusability: Abstract classes allow for code reuse by providing a 

base implementation for some methods while forcing subclasses to implement the 
abstract methods. 

2. Flexibility with Common Behavior: Abstract classes can define common behavior (in 
concrete methods) that all subclasses should share, while allowing subclasses to override 
or provide their unique implementation of other behaviors. 

3. Ease of Extension: New classes can be easily added to the system by extending the 
abstract class and providing specific implementations for abstract methods. 
 

 
Fig 8.5 Benefits of Using Abstract Classes for Polymorphism 
 
Real-World Example 
Consider a shape system where different shapes (e.g., Circle, Rectangle, Triangle) inherit 
from an abstract class Shape. The Shape class might declare an abstract method draw() that 
each subclass must implement. 
abstract class Shape { 
    abstract void draw(); 
     
    void moveTo(int x, int y) { 
        System.out.println("Moving to x: " + x + ", y: " + y); 
    } 
} 



Centre for Distance Education                                        8.14                                   Acharya Nagarjuna University 

class Circle extends Shape { 
    void draw() { 
        System.out.println("Drawing a Circle"); 
    } 
} 
 
class Rectangle extends Shape { 
    void draw() { 
        System.out.println("Drawing a Rectangle"); 
    } 
} 
 
class Triangle extends Shape { 
    void draw() { 
        System.out.println("Drawing a Triangle"); 
    } 
} 
 
public class ShapeDemo { 
    public static void main(String[] args) { 
        Shape myShape; 
         
        myShape = new Circle(); 
        myShape.draw();          // Outputs: Drawing a Circle 
        myShape.moveTo(5, 10);   // Outputs: Moving to x: 5, y: 10 
 
        myShape = new Rectangle(); 
        myShape.draw();          // Outputs: Drawing a Rectangle 
        myShape.moveTo(15, 20);  // Outputs: Moving to x: 15, y: 20 
 
        myShape = new Triangle(); 
        myShape.draw();          // Outputs: Drawing a Triangle 
        myShape.moveTo(25, 30);  // Outputs: Moving to x: 25, y: 30 
    } 
} 
In this example, the Shape abstract class provides a common interface and some shared 
functionality (moveTo method), while specific shapes like Circle, Rectangle, and Triangle 
provide their own implementation of the draw() method. The abstract class enables 
polymorphism, allowing the Shape reference to be used interchangeably for any shape 
subclass. 
 
Key Points 

 Abstract classes are useful when you have a base class that should not be instantiated 
and should define a common interface for its subclasses. 

 Polymorphism allows for dynamic method dispatch, where the method that gets 
executed is determined at runtime based on the actual object's type, not the reference's 
type. 

 Abstract classes can have both abstract methods (which must be implemented by 
subclasses) and concrete methods (which can be shared across all subclasses). 

 



OOP  with Java                                               8.15                               Polymorphism 

Using abstract classes for polymorphism is a powerful tool in Java, especially when you need 
to define a common behavior across multiple classes while still allowing each class to 
provide its unique implementation. 
 
8.7 ADVANTAGES AND DISADVANTAGES OF POLYMORPHISM  
 
8.7.1 Advantages 
o Flexibility: Easier to introduce new implementations. 
o Code Reusability: Reduces code duplication. 
o Ease of Maintenance: Changes in code are localized. 

 
8.7.2 Disadvantages 
o Complexity: Can introduce complexity and make debugging harder. 
o Performance: Dynamic method dispatch can have a slight performance overhead. 

 
8.8 COMMON MISTAKES AND BEST PRACTICES 
 
8.8.1 Common Mistakes 
o Confusing method overloading with overriding. 
o Misusing polymorphism, leading to overly complex hierarchies. 
8.8.2 Best Practices 
o Favor composition over inheritance where possible. 
o Keep class hierarchies shallow. 
o Use @Override annotations to avoid accidental overloading. 
 
8.9 SUMMARY 
 

Polymorphism is a fundamental concept in Java's object-oriented programming that 
enables objects to be treated as instances of their parent class or interface, allowing for more 
flexible and scalable code. It allows a single interface or abstract class to be used for a 
general class of actions, while specific behavior is determined by the actual subclass or 
implementation at runtime. This is achieved through method overriding in subclasses or 
through the implementation of interfaces. Polymorphism promotes code reusability, 
modularity, and makes it easier to manage and extend applications. By utilizing 
polymorphism, developers can design systems that are more adaptable to change, 
maintainable, and robust, as it decouples the code that uses the polymorphic objects from the 
specific implementation details of those objects. 

 
8.10 TECHNICAL TERMS 
 

 Polymorphism 

 Abstract Class 

 Interface 

 Compile Time 

 Run Time 

 Overriding 

 



Centre for Distance Education                                        8.16                                   Acharya Nagarjuna University 

8.11 SELF ASSESSMENT QUESTIONS 
 
Essay questions: 
 

1. Discuss how compile-time polymorphism (method overloading) and runtime 
polymorphism (method overriding) are implemented in Java.  

2. Compare and contrast the use of interfaces and abstract classes in achieving 
polymorphism in Java. 

3. How does method overriding affect exception handling, particularly with checked and 
unchecked exceptions? 

 
Short questions:  
 

1. What is Polymorphism in Java? 
2. How is Polymorphism Achieved in Java? 
3. What is the Difference Between Overloading and Overriding in the Context of 

Polymorphism? 
4. How Does Polymorphism Work with Interfaces and Abstract Classes? 
5. What are the Advantages and Disadvantages of Polymorphism? 

 
8.12 SUGGESTED READINGS 
 
1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021), McGraw-Hill 

Education 
2.  "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005), O'Reilly Media 
3. "Effective Java" by Joshua Bloch,3rd Edition (2018), Addison-Wesley Professional 

 
 
                Dr. KAMPA LAVANYA 



LESSON- 9 

PACKAGES 
 
OBJECTIVES: 
 
After going through this lesson, you will be able to  
 

 Describe the role of packages in organizing and managing classes and interfac 
 Distinguish between built-in packages and user-defined packages. 
 Write the syntax for declaring a package and explain the naming conventions for 

packages. 
 Describe how to run Java programs that include classes from user-defined packages. 
 Explain how packages and sub-packages help in avoiding naming conflicts 

 
STRUCTURE: 
 
9.1 Java package 

9.1.1 Key Benefits of Using Packages 
9.2 Types of packages 

9.2.1 Built-in Packages 
9.2.2 User-defined Packages 

9.3 Creating and running a package 
9.3.1 Creating a Package 
9.3.2 Steps to Create a Package: 

9.4 Compiling and running a packages 
9.5 Accessing a package 

9.5.1 Using packagename 
9.5.2 Using packagename.classname 
9.5.3 Using fully qualified name 

9.6 Sub package 
9.6.1 Creating Sub-packages 
9.6.2 Compiling and Running Classes in Sub-packages 
9.6.3 Accessing Sub-packages 

9.7 Summary 
9.8 Technical Terms 
9.9  Self-Assessment Questions 
9.10  Further Readings 
 
9.1 JAVA PACKAGE 
 

Packages in Java are a mechanism to group related classes, interfaces, and sub-
packages together. This helps in organizing files within a project, avoiding naming conflicts, 
and controlling access to classes and interfaces. A package acts like a folder in a file system 
and can contain classes, interfaces, sub-packages, and other packages. 
 
9.1.1 Key Benefits of Using Packages 
 

1. Namespace Management: Packages prevent naming conflicts by differentiating 
classes and interfaces with the same name but in different packages.  



Centre for Distance Education                       9.2                       Acharya Nagarjuna University  

 

2. Access Protection: Packages allow control over the accessibility of classes and 
interfaces. Members with default (package-private) access are accessible only within 
their own package. 

3. Code Organization and Modularity: Packages help in organizing classes logically, 
making code easier to manage, maintain, and understand. 

4. Reusability: By grouping related classes and interfaces, packages promote reusability 
of code across different projects. 

 
9.2 TYPES OF PACKAGES 
 
Java provides two main types of packages: 

1. Built-in Packages: These are pre-defined packages that come with the Java Standard 
Library. Examples include ‘java.lang’, ‘java.util’, ‘java.io’, and ‘java.awt’. 

2. User-defined Packages: These are custom packages created by the programmer to 
group related classes and interfaces based on the functionality of the application. 

 
9.2.1 Built-in Packages 
 
Built-in packages provide a large set of reusable classes for various functionalities: 
- ‘java.lang’: Contains fundamental classes such as ‘String’, ‘System’, and ‘Math’. This 
package is automatically imported by the compiler for every Java program. 
   
- ‘java.util’: Provides utility classes like ‘ArrayList’, ‘HashMap’, ‘Date’, and many others for 
data structure management, date manipulation, and more. 
  - ‘java.io’: Contains classes for input and output operations, such as ‘File’, ‘FileReader’, 
‘BufferedReader’, and ‘PrintWriter’. 
  - ‘java.awt’: Includes classes for building graphical user interface (GUI) components, like 
‘Button’, ‘Frame’, and ‘Canvas’. 

 
Figure 9.1 built in packages 

 
 
 
 



OOP with Java                  9.3                                                            Packages 
 

 
 

9.2.2 User-defined Packages 
 
User-defined packages are created by developers to encapsulate their classes and interfaces. 
This is especially useful for larger projects where different modules may need to be 
developed and maintained separately. 
 
9.3 CREATING AND ACCESSING A PACKAGE 
 
9.3.1 Creating a Package 
 
To create a package in Java, you need to declare the package name at the very top of your 
Java source file, before any ‘import’ statements or class definitions. 
 
Syntax: 
package packageName; 

 
Example: 
 
// File: MyPack/Car.java 
package MyPack; 
 
public class Car { 
    public void display() { 
        System.out.println("This is a car."); 
    } 
} 

 
In this example, we create a package named ‘‘MyPack’ and define a ‘Car’ class inside it. 
 
9.3.2 Steps to Create a Package: 
 

1. Choose a Package Name: The package name should be unique to avoid conflicts and 
should follow the naming conventions (usually lowercase and reflective of the 
functionality or company domain). 

2. Declare the Package: At the top of your Java file, use the ‘package’ keyword followed 
by the package name. 

3. Save the File: Save the Java file in a directory structure that matches the package 
name. For example, ‘‘MyPack.Car’ should be saved in a directory named ‘‘MyPack’. 

 
9.4 COMPILING AND RUNNING THE PACKAGE 
 
To compile the class inside the package, navigate to the source directory and use the ‘javac’ 
command with the full path to the file. 
 
If you are not using any IDE, you need to follow the syntax given below: 
   javac -d directory javafilename   
For example 
   javac -d . package/javafile.java   
 The -d switch specifies the destination where to put the generated class file. 
 We can use any directory If you want to keep the package within the same directory, 
you can use . (dot).  



Centre for Distance Education                       9.4                       Acharya Nagarjuna University  

 

javac -d . Mypack/Car.java   

 
To run a class from a package, use the ‘java’ command with the fully qualified class name 
(including the package name). 
 
Example: 
java MyPack.Car 

We need to use fully qualified name e.g. mypack.Simple etc to run the class.  
 To Compile:  javac -d . Car.java  
     To Run:   java mypack.Car 
 Output:  This is a Car  
 The -d is a switch that tells the compiler where to put the class file i.e. it represents 
destination. The  • (dot)represents the current folder.  
 
9.5 ACCESSING A PACKAGE 
 
There are three ways to access the package from outside the package.  
 Import    package.*; 
 import    package.classname; 
 fully qualified name. 

 
Figure 9.2 package accessing hierarchy  
 
9.5.1 Using packagename.* 
 
If you use package.* then all the classes and interfaces of this package will be accessible but 
not subpackages. The import keyword is used to make the classes and interface of another 
package accessible to the current package. 
 
Program 1: 
//save by A.java   Javac –d .  A.java 
  package pack;   
public class A 
{   
  public void msg() 
   {  
 System.out.println("Hello"); 
    }   
}   

 
Program 2: 
//save by B.java   
package mypack;   
import pack.*;   



OOP with Java                  9.5                                                            Packages 
 

 
 

class B 
{   
    public static void main(String args[]) 
    {   
     A obj = new A();   
  obj.msg();   
     }   
}   

Javac –d B.java 
Java  mypack.B 
 
9.5.2 Using packagename.classname 
 
If we import package.classname then only declared class of this package will be accessible. 
 
//save by A.java   
   
package pack;   
public class A 
{   
     public void msg() 
    { 
       System.out.println("Hello"); 
    }   
}   

 
//save by B.java   
   
package mypack;   
import pack.A;   
   
class B 
{   
    public static void main(String args[]) 
    {   
     A obj = new A();   
     obj.msg();   
      }   
}  
 

9.5.3   Using fully qualified name 
 
If you use fully qualified name then only declared class of this package will be accessible. 
Now there is no need to import. But you need to use fully qualified name every time when 
you are accessing the class or interface. 
 
It is generally used when two packages have same class name e.g. java.util and java.sql 
packages contain Date class 
//save by A.java   
   
package pack;   
public class A 
{   
  public void msg() 
   {  
 System.out.println("Hello"); 
    }   



Centre for Distance Education                       9.6                       Acharya Nagarjuna University  

 

}   

 
//save by B.java   
   
package mypack;   
import pack.*;   
   
class B 
{   
    public static void main(String args[]) 
    {   
      pack.A obj = new pack.A(); 
   obj.msg();   
     }   
} 

 
Note:  If you import a package, all the classes and interface of that package will be imported 
excluding the classes and interfaces of the subpackages. Hence, you need to import the 
subpackage as well. 
 
9.6 SUB PACKAGE 
 

A sub-package in Java is a package that is nested within another package. It is 
essentially a package inside another package and helps in further organizing classes and 
interfaces in a hierarchical manner. 
 

Sub-packages allow developers to create a more structured organization of related 
classes and interfaces by grouping them into a hierarchy of packages. This is useful in large 
projects where grouping related functionalities together in a clear structure is important. 
Sub-packages are named by adding another level to the existing package name, separated by 
a dot ('.'). For example, if you have a main package named 'com.example', a sub-package 
might be 'com.example.utils'. 
 

In Java, sub-packages do not inherit access privileges from their parent packages. 
Each sub-package is treated as an independent package, even though they are hierarchically 
related. This means that the classes and interfaces in a sub-package are not automatically 
accessible to the parent package, unless explicitly imported. 
 
9.6.1 Creating Sub-packages 
 
To create a sub-package, you simply declare it by specifying the full package name at the 
beginning of your Java source file. This includes the parent package and the sub-package. 
 
Example: 
Let's create a package 'com.example' with a sub-package 'com.example.utils'. 
1. Main Package: 'com.example'  
   // File: com/example/Car.java 
   package com.example; 
 
   public class Car { 
       public void display() { 
           System.out.println("This is a car from com.example package."); 
       } 
   } 



OOP with Java                  9.7                                                            Packages 
 

 
 

  2. Sub-package: 'com.example.utils' 
     // File: com/example/utils/Helper.java 
   package com.example.utils; 
 
   public class Helper { 
       public void help() { 
           System.out.println("Helper class in com.example.utils 
package."); 
       } 
   } 

    
9.6.2 Compiling and Running Classes in Sub-packages 
 
To compile classes that belong to a sub-package, you should maintain the directory structure 
that reflects the package name. 
Compilation: 
javac com/example/Car.java 
javac com/example/utils/Helper.java 

 
Running: 
To run a class from the sub-package, you need to provide the fully qualified class name: 
java com.example.Car 
java com.example.utils.Helper 

 
9.6.3 Accessing Sub-packages 
 
To access a class or interface from a sub-package in another Java file, you need to import it 
using the 'import' statement with the full package name. 
 
Example: 
import com.example.utils.Helper; 
public class Main { 
    public static void main(String[] args) { 
        Helper helper = new Helper(); 
        helper.help();  // Output: Helper class in com.example.utils 
package. 
    } 
} 

 
Alternatively, you can use a wildcard to import all classes from the sub-package: 
import com.example.utils.*; 
 
public class Main { 
    public static void main(String[] args) { 
        Helper helper = new Helper(); 
        helper.help();  // Output: Helper class in com.example.utils 
package. 
    } 
} 



Centre for Distance Education                       9.8                       Acharya Nagarjuna University  

 

 
Figure 9.3 package accessing level 

 
9.7   SUMMARY 
 

The chapter on Java packages introduces the concept of packages, which are used to 
group related classes and interfaces to manage namespaces, promote modularity, and enhance 
code organization. It covers the two main types of packages: built-in packages provided by 
the Java Standard Library and user-defined packages created by developers for custom use.  

 
The chapter explains how to create a package, compile and run classes within it, and 

access classes from a package using the import statement. It also discusses sub-packages, 
which are packages nested within other packages, allowing for a hierarchical structure that 
further organizes code into logical groups. Through this, the chapter emphasizes the 
importance of packages in maintaining clean and manageable Java projects. 
 
9.8 TECHNICAL TERMS 

 
Package, modularity, hierarchy, sub package.  

 
9.9  SELF ASSESSMENT QUESTIONS 
 
Essay questions: 

1. Describe the purpose of packages in Java . Illustate the types of packages with 
examples. 

2. Explain the steps involved in creating, compiling, and running a package in Java. 
3. Discuss the concept of sub-packages in Java. 
4. What are the different ways to access a class from a package in Java? 

 
 
 



OOP with Java                  9.9                                                            Packages 
 

 
 

Short Answer Questions:   
1. What is a package in Java, and why is it important? 
2. List two types of packages in Java and provide examples for each. 
3. How do you create a package in Java? Explain with syntax. 
4. Explain how to access a class from a package in another Java file. 

 
9.10    SUGGESTED READINGS 
 

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive 
Introduction”, McGraw Hill, 1st Edition, 2013.  

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 
2018.  

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson 
Education, Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:  

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.  
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st 

Edition, 2007.  
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd 

Edition, 2014 
 
 

Dr. U. SURYA KAMESWARI 
 



LESSON- 10 

FILES 
 
OBJECTIVES: 
 
After going through this lesson, you will be able to  
 

 Learn about the concept of streams in Java 
 Understand the different constructors of FileOutputStream and FileInputStream and 

their usage. 
 Understand the use of different constructors of FileWriter for creating or appending to 

files. 
 Understand how to create and use FileReader to read character data from files. 
 Apply the knowledge of stream classes to solve real-world file input and output 

problems. 
 
STRUCTURE: 
 
10.1 Stream classes  

10.1.1   Byte Streams 
10.1.2 Character Streams 

10.2 Creating a File using File Output Stream  
10.2.1 Steps to Create a File Using FileOutputStream 
10.2.2 Example: Creating a File Using FileOutputStream 

10.3 Reading Data from a File using File Input Stream  
10.3.1 Steps to Read Data from a File Using FileInputStream 
10.3.2 Example: Reading Data from a File Using FileInputStream 

10.4 Creating a File using File Writer 
10.4.1 Steps to Create a File Using FileWriter 
10.4.2 Example: Creating a File Using FileWriter 

10.5 Reading a File using File Reader 
10.5.1 Steps to Read a File Using FileReader 
10.5.2 Example: Reading a File Using FileReader 

10.6 Summary 
10.7 Technical Terms 
10.8 Self-Assessment Questions 
10.9 Further Readings 
 
10.1 STREAM CLASSES 
 

Java streams provide a way to handle input and output operations (I/O) in Java. They 
enable reading data from a source or writing data to a destination in a sequential manner.  
 

All the programming languages provide support for standard I/O where user's 
program can take input from a keyboard and then produce output on the computer screen. If 
you are aware if C or C++ programming languages, then you must be aware of three standard 
devices STDIN, STDOUT and STDERR. Similar way Java provides following three standard 
streams 



Centre for Distance Education                             10.2                     Acharya Nagarjuna University  

 

 Standard Input: This is used to feed the data to user's program and usually a keyboard 
is used as standard input stream and represented as System.in. 

 Standard Output: This is used to output the data produced by the user's program and 
usually a computer screen is used to standard output stream and represented as 
System.out. 

 Standard Error: This is used to output the error data produced by the user's program 
and usually a computer screen is used to standard error stream and represented as 
System.err. 

 
No matter where the data is coming from or going to and no  matter what its type, the 
algorithms for sequentially reading  and writing data are basically the same 
 
 
 
 
 
 

Figure 10.1 read stream 
 

 
 
 
 
 
 

Figure 10.2 Write stream 
 
 

Java provides two primary types of streams: 
 
1.  Byte Streams: Used for reading and writing binary data (8-bit bytes). 
2.  Character Streams: Used for reading and writing text data (16-bit Unicode characters). 
 
10.1.1   Byte Streams 
 
A byte stream in Java is a type of stream used to perform input and output operations of raw 
binary data, which is represented in 8-bit bytes. Byte streams are primarily used for reading 
and writing binary data, such as images, audio files, and other non-text data types. They are 
part of Java's I/O (Input/Output) system, which is used to handle data streams for reading and 
writing data to and from files, network connections, or other input/output sources. 
Features of Byte Streams 

 Handles Raw Binary Data: Byte streams are designed to handle raw binary data, 
which makes them suitable for files and data sources that are not in a human-readable 
text format. 

 8-Bit Bytes: Byte streams operate on 8-bit bytes, which means they process data one 
byte at a time. This is ideal for data that is already in byte format or needs to be 
processed at the byte level. 

 Unbuffered and Buffered Streams: Byte streams come in both unbuffered and 
buffered variants. Unbuffered streams handle each byte individually, while buffered 
streams use an internal buffer to optimize read and write operations by reducing the 
number of native I/O calls. 

Source ii  nn  ff  oo  rr  mm  aa  tt  ii  oo  nn Program 

Stream 

reads 

Dest. ii  nn  ff  oo  rr  mm  aa  tt  ii  oo  nn Program 

Stream 

   writes 



OOP with Java                      10.3                                                       Files 

 

 
 

 Used for Binary Files: Byte streams are commonly used to read and write binary 
files like images, audio files, and serialized objects, where precise control over the 
binary format is required. 
 

Java provides several classes for handling byte streams, but the most commonly used are: 
 

InputStream: The base class for all byte input streams in Java. It defines methods for 
reading bytes from a source. 
OutputStream: The base class for all byte output streams in Java. It defines methods for 
writing bytes to a destination. 
Some of the specific subclasses of InputStream and OutputStream include: 
FileInputStream: A subclass of InputStream used for reading bytes from a file. 
FileOutputStream: A subclass of OutputStream used for writing bytes to a file. 
BufferedInputStream: A subclass of InputStream that adds buffering to improve reading 
performance by reducing the number of native I/O operations. 
BufferedOutputStream: A subclass of OutputStream that adds buffering to improve 
writing performance by reducing the number of native I/O operations. 
 

 

 
Figure 10.3 input stream class hierarchy 

 

 
Figure 10. 4 outputstream class hierarchy  



Centre for Distance Education                             10.4                     Acharya Nagarjuna University  

 

10.1.2 Character Streams 
 
A character stream in Java is a type of stream used to handle input and output operations of 
character data. Character streams are designed to work with data in a human-readable text 
format, such as Unicode characters. These streams are ideal for processing text files or any 
data source where the input and output are in character form rather than raw binary data. 
Features of Character Streams 

 Handles Character Data: Character streams work with 16-bit Unicode characters, 
making them suitable for reading and writing text data. This includes letters, digits, and 
other textual symbols. 

 Automatic Character Encoding and Decoding: Character streams automatically 
handle character encoding and decoding, making it easier to work with text files in 
different languages and character sets. 

 Buffered and Unbuffered Streams: Similar to byte streams, character streams also 
come in buffered and unbuffered variants. Buffered streams provide higher 
performance by minimizing the number of I/O operations through the use of an internal 
buffer. 

 Suitable for Text Files: Character streams are commonly used for reading from and 
writing to text files, where the data is encoded in character format rather than binary. 

 
Character Stream Classes in Java 
 

Java provides several classes for handling character streams. The two main abstract base 
classes for character streams are: 
Reader: The base class for all character input streams in Java. It defines methods for reading 
character data. 
Writer: The base class for all character output streams in Java. It defines methods for writing 
character data. 
Some of the specific subclasses of Reader and Writer include: 
FileReader: A subclass of Reader used for reading characters from a file. 
FileWriter: A subclass of Writer used for writing characters to a file. 
BufferedReader: A subclass of Reader that adds buffering to improve reading performance 
by reducing the number of native I/O operations. 
BufferedWriter: A subclass of Writer that adds buffering to improve writing performance 
by reducing the number of native I/O operations. 
InputStreamReader: A bridge from byte streams to character streams; reads bytes and 
decodes them into characters using a specified charset. 
OutputStreamWriter: A bridge from character streams to byte streams; encodes characters 
into bytes using a specified charset. 
 

 
Figure 10.6 Readerr class  stream hierarchy 



OOP with Java                      10.5                                                       Files 

 

 
 

 
Figure 10.6 Writer class  stream hierarchy 

 
 
10.2 CREATING A FILE USING FILE OUTPUT STREAM  

 
Creating a file using FileOutputStream in Java involves writing raw byte data to a file. The 
FileOutputStream class is part of the byte stream family, which is designed for handling 
raw binary data. It can be used to create a file and write data to it byte by byte. 
 
10.2.1 Steps to Create a File Using FileOutputStream 
 Import the Necessary Package: FileOutputStream is part of the java.io package, 

so you need to import it. 
 Create an Instance of FileOutputStream: You need to create a FileOutputStream 

object, specifying the file you want to create or write to. If the file doesn't exist, it will 
be created. If it exists, it can either be overwritten or appended to, depending on the 
constructor used. 

 Write Data to the File: Use the write() method to write data to the file. The data 
should be in the form of bytes, so if you're writing text, you'll need to convert it into 
bytes using String.getBytes(). 

 Close the Stream: Always close the FileOutputStream using the close() method to 
release system resources and ensure all data is properly written to the file. 

 

 
Figure 10.7: Creating a text file 

 
 
 
 



Centre for Distance Education                             10.6                     Acharya Nagarjuna University  

 

10.2.2 Example: Creating a File Using FileOutputStream 
 
import java.io.FileOutputStream; 
import java.io.IOException; 
 
public class FileOutputStreamExample { 
    public static void main(String[] args) { 
        String data = "This is an example of writing data to a file using 
FileOutputStream."; 
 
        // Try-with-resources statement ensures that each resource is 
closed at the end of the statement 
        try (FileOutputStream fos = new FileOutputStream("output.txt")) { 
            // Convert string data to byte array 
            byte[] byteData = data.getBytes(); 
 
            // Write byte array to the file 
            fos.write(byteData); 
 
            // Output a message indicating success 
            System.out.println("Data successfully written to the file."); 
        } catch (IOException e) { 
            // Handle any IOExceptions that may occur 
            e.printStackTrace(); 
        } 
    } 
} 

 
The following steps gives explanation for the above program.. 

 String data: A string containing the data to be written to the file. 
 FileOutputStream fos = new FileOutputStream("output.txt"): This line 

creates a new FileOutputStream object to write to a file named "output.txt". If 
the file does not exist, it will be created. If it exists, it will be overwritten (if you want 
to append to the file instead, use new FileOutputStream("output.txt", true)). 

 data.getBytes(): Converts the string data to a byte array. The write() method of 
FileOutputStream requires data in byte format. 

 fos.write(byteData): Writes the byte array to the file. 
 fos.close(): Closes the FileOutputStream. The try-with-resources statement 

ensures that the stream is automatically closed, even if an exception occurs. 
 Using try-with-resources : In the example above, we use the try-with-

resources statement, which is a good practice when dealing with I/O streams. This 
statement automatically closes the stream after the try block has finished executing, 
which helps to avoid resource leaks and ensures that the file is properly closed. 

 
10.3   READING DATA FROM A FILE USING FILE INPUT STREAM  
 

Reading data from a file using FileInputStream in Java involves opening a file and 
reading its raw byte data. The FileInputStream class is part of Java's I/O (Input/Output) 
system and is used for reading streams of raw bytes, such as image or audio files. It's 
especially useful when dealing with binary files where the data is not in a human-readable 
format. 



OOP with Java                      10.7                                                       Files 

 

 
 

 
Figure 10.8  : Reading data from a text file 

 
10.3.1 Steps to Read Data from a File Using FileInputStream 
 
 Import the Necessary Package: FileInputStream is part of the java.io package, so 

you need to import it. 
 Create an Instance of FileInputStream: Create a FileInputStream object by 

passing the path of the file you want to read to its constructor. This opens the file for 
reading. 

 Read Data from the File: Use the read() method to read data from the file. This 
method reads the next byte of data and returns it as an int. If the end of the file is 
reached, it returns -1. 

 Close the Stream: Always close the FileInputStream using the close() method to 
free up system resources. 

 
10.3.2  Example: Reading Data from a File Using FileInputStream 
 
import java.io.FileInputStream; 
import java.io.IOException; 
 
public class FileInputStreamExample { 
    public static void main(String[] args) { 
        // Specify the file path 
        String filePath = "example.txt"; 
 
        // Try-with-resources statement to ensure the FileInputStream is 
closed 
        try (FileInputStream fis = new FileInputStream(filePath)) { 
            // Variable to hold the byte being read 
            int byteData; 
 
            // Read until the end of the file 
            while ((byteData = fis.read()) != -1) { 
                // Convert byte data to character and print to console 
                System.out.print((char) byteData); 
            } 
        } catch (IOException e) { 
            // Handle any IOExceptions 
            e.printStackTrace(); 
        } 
    } 
} 

 



Centre for Distance Education                             10.8                     Acharya Nagarjuna University  

 

The following steps gives explanation for the above program.. 
 String filePath = "example.txt": Defines the path to the file that will be read. In 

this example, it assumes the file is in the current working directory. 
 FileInputStream fis = new FileInputStream(filePath): Creates a new 

FileInputStream object for the specified file. If the file does not exist, this will throw 
a FileNotFoundException. 

 int byteData: A variable to store the data read from the file. The read() method 
returns the next byte of data as an int. If the end of the file is reached, read() returns -
1. 

 while ((byteData = fis.read()) != -1): This loop reads the file byte by byte until 
the end of the file is reached. Each byte read is cast to a char and printed to the console. 

 fis.close(): Although we do not explicitly call close() here, the try-with-
resources statement ensures that the FileInputStream is closed automatically when 
the try block is exited, either normally or because of an exception. 

 Using try-with-resources: The example uses the try-with-resources statement, 
which is a recommended practice when working with I/O streams in Java. This 
statement automatically closes the stream when it is no longer needed, helping to 
prevent resource leaks. 

 
10.4 CREATING A FILE USING FILE WRITER 
 
Creating a file using FileWriter in Java involves writing character data to a file. 
FileWriter is part of Java's character stream classes, which are used for handling text data. 
It writes characters to a file in a platform-independent manner, making it suitable for working 
with text files. 
 

 
Figure 10.9 Reading from and writing to files 
 
10.4.1 Steps to Create a File Using FileWriter: 
 

 Import the Necessary Package: FileWriter is part of the java.io package, so you 
need to import it. 

 Create an Instance of FileWriter: Create a FileWriter object by specifying the file 
you want to create or write to. If the file doesn't exist, FileWriter will create it. If it 
exists, it will be overwritten by default (you can append to the file by passing a second 
argument as true). 



OOP with Java                      10.9                                                       Files 

 

 
 

 Write Data to the File: Use the write() method to write data to the file. The data 
should be in the form of a string or an array of characters. 

 Close the Stream: Always close the FileWriter using the close() method to ensure 
that all data is properly written and resources are released. 

 
10.4.2 Example: Creating a File Using FileWriter 
 
import java.io.FileWriter; 
import java.io.IOException; 
 
public class FileWriterExample { 
    public static void main(String[] args) { 
        String data = "This is an example of writing data to a file using 
FileWriter."; 
 
        // Using try-with-resources to ensure FileWriter is closed 
        try (FileWriter fw = new FileWriter("output.txt")) { 
            // Write data to the file 
            fw.write(data); 
 
            // Print confirmation message 
            System.out.println("Data successfully written to the file."); 
        } catch (IOException e) { 
            // Handle any IOExceptions 
            e.printStackTrace(); 
        } 
    } 
} 

 
The following steps gives explanation for the above program. 
 FileWriter fw = new FileWriter("output.txt", true): The second argument 

(true) tells the FileWriter to append to the file instead of overwriting it. If the file 
doesn't exist, it will be created. 

 fw.write(data): This writes the string data to the file. Since the FileWriter is in 
append mode, the data is added to the end of the file 

 Using try-with-resources: In both examples, we use the try-with-resources 
statement, which is a best practice when dealing with I/O streams in Java. This 
statement ensures that the FileWriter is automatically closed, even if an exception 
occurs, which helps to prevent resource leaks. 

 
10.5 READING A FILE USING FILE READER 
 

Reading a file using FileReader in Java involves reading character data from a file. 
FileReader is part of Java's character stream classes, designed for reading streams of 
characters from a file. It's particularly useful for handling text files where the data is in 
human-readable format. 
 
10.5.1 Steps to Read a File Using FileReader 
 Import the Necessary Package: FileReader is part of the java.io package, so you 

need to import it. 
 Create an Instance of FileReader: Create a FileReader object by passing the file 

name or File object that you want to read from. 



Centre for Distance Education                             10.10                     Acharya Nagarjuna University  

 

 Read Data from the File: Use the read() method to read characters from the file. This 
method reads a single character at a time and returns it as an int. If the end of the file is 
reached, it returns -1. 

 Close the Stream: Always close the FileReader using the close() method to release 
system resources. 

 
10.5.2 Example: Reading a File Using FileReader 
 
import java.io.FileReader; 
import java.io.IOException; 
 
public class FileReaderExample { 
    public static void main(String[] args) { 
        // Specify the file to be read 
        String filePath = "example.txt"; 
 
        // Using try-with-resources to ensure FileReader is closed 
        try (FileReader fr = new FileReader(filePath)) { 
            int character; 
 
            // Read characters one by one from the file 
            while ((character = fr.read()) != -1) { 
                System.out.print((char) character);  // Print each 
character to the console 
            } 
        } catch (IOException e) { 
            // Handle any IOExceptions 
            e.printStackTrace(); 
        } 
    } 
} 
 

The following steps gives explanation for the above program.. 
 String filePath = "example.txt": Specifies the path to the file that will be read. 

In this example, it assumes the file is in the current working directory. 
 FileReader fr = new FileReader(filePath): Creates a FileReader object for the 

specified file. If the file does not exist, this will throw a FileNotFoundException. 
 int character: A variable to store each character read from the file. The read() 

method returns the next character as an int. If the end of the file is reached, read() 
returns -1. 

 while ((character = fr.read()) != -1): This loop reads the file character by 
character until the end of the file is reached. Each character read is cast to a char and 
printed to the console. 

 fr.close(): Although not explicitly called in this example, the try-with-resources 
statement automatically closes the FileReader when the try block is exited, either 
normally or due to an exception. 

 

10.6  SUMMARY 
 

The chapter on Java Streams provides an in-depth exploration of Java’s input and 
output (I/O) capabilities using streams. It begins by introducing the concept of stream classes, 
explaining the distinction between byte streams and character streams, and their respective 
uses for handling raw binary and text data. The chapter then delves into practical file 
operations, demonstrating how to create files using FileOutputStream and FileWriter for 



OOP with Java                      10.11                                                       Files 

 

 
 

writing byte and character data, respectively. It also covers reading files using 
FileInputStream and FileReader, showing how to efficiently read data from files, manage 
resources, and handle exceptions properly. By the end of the chapter, learners will have a 
comprehensive understanding of how to perform basic file I/O operations in Java, leveraging 
the appropriate stream classes based on the type of data being processed. 
 
10.7    TECHNICAL TERMS 
 
 Stream, InputOutput, Byte stream, Character stream, File 
 
10.8   SELF ASSESSMENT QUESTIONS 

 

Essay questions: 
1. Explain the concept of Java streams and their hierarchy. Discuss the differences 

between InputStream, OutputStream, Reader, and Writer classes,  
2. Discuss the process of creating and writing to a file using FileOutputStream and 

FileWriter in Java.  
3. Describe the steps and methods involved in reading data from a file using 

FileInputStream and FileReader.  
4. Compare these two classes in terms of their functionality, data handling, and typical use 

cases. Include examples to illustrate your points. 
5. How do FileWriter and FileReader handle text data differently from FileOutputStream 

and FileInputStream? Include examples of writing and reading text files. 
 
Short Answer Questions:   

1. What is a stream in Java, and why is it important for input and output operations? 
2. Differentiate between byte streams and character streams in Java. Give examples of 

classes used for each type of stream. 
3. What is the primary purpose of the FileOutputStream class in Java? How do you use 

it to create a new file? 
4. Explain how to read data from a file using FileInputStream in Java. What method is 

commonly used for this purpose? 
5. Describe the purpose of the FileWriter class in Java. How does it differ from 

FileOutputStream? 
6. How does the FileReader class work in Java? What kind of data is it best suited for? 

 
10.9 SUGGESTED READINGS 
 

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive 
Introduction”, McGraw Hill, 1st Edition, 2013.  

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 
2018.  

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson 
Education, Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:  

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.  
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st 

Edition, 2007.  
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd 

Edition, 2014 
 

  Dr. U. SURYA KAMESWARI 



LESSON- 11 

EXCEPTIONAL HANDLING 
 
OBJECTIVES: 
 
After going through this lesson, you will be able to  
 
 Understand the different types of errors  
 Learn the difference between checked and unchecked exceptions. 
 Learn how to use try, catch, finally, and try-with-resources statements to handle 

exceptions effectively. 
 Understand the use of the throws clause in method signatures 
 Explore the role of the throw clause in input validation, error propagation, and creating 

custom exceptions. 
 
STRUCTURE: 
 
11.1  Errors in Java Program 

11.1.1. Syntax Errors 
11.1.2. Runtime Errors 
11.1.3. Logical Errors: 
11.1.4. Compilation Errors 

11.2  Exceptions 
11.2.1 Various Categories of Exceptions  

11.2.1.1. Checked Exceptions 
11.2.1.2. Runtime Exceptions 
11.2.1.3 Errors 

11.3  Hierarchy of Exceptions 
11.3.1 Built in Exceptions 

11.4 Exception Handling 
11.4.1 try – catch block 

11.4.1.1 Without Exception Handling 
          11.4.1.2 With Exception Handling 

11.4.2   Multiple catch blocks 
11.4.3   Example: Using a Single Catch Block for Multiple Exceptions 
11.4.4   Finally block 

11.4.4.1 Syntax : 
11.4.4.2 How the 'finally' Block Works 

11.5  Throws Clause 
11.6  Throw Clause 
11.7  Summary 
11.8 Technical Terms 
11.9 Self-Assessment Questions 
11.10 Further Readings 
 
11.1   ERRORS IN JAVA PROGRAM 
 
Errors in Java can be broadly classified into several categories.  
 



Centre for Distance Education                                          11.2                               Acharya Nagarjuna University  

 

11.1.1. Syntax Errors: 
 
   Syntax errors are errors in the structure of our code, usually detected at compile time. These 
type of errors arise if rules of the language are not followed. 
 Examples: 
     - Missing semicolons (`;`). 
     - Mismatched braces (`{}`, `[]`, `()`). 
     - Incorrect method signatures. 
 Example Code: 
        public class Main { 
         public static void main(String[] args) { 
             System.out.println("Hello World"  // Missing closing 
parenthesis 
         } 
     } 

     
11.1.2. Runtime Errors: 
 
Runtime errors are errors that occur while the program is running, leading to abnormal 
termination. These type of errors occur because the program tries to perform an operation that 
is impossible to complete.  
 Examples: 
     - Division by zero (`ArithmeticException`). 
     - Null pointer dereference (`NullPointerException`). 
     - Array index out of bounds (`ArrayIndexOutOfBoundsException`). 
 Example Code: 
     public class Main { 
         public static void main(String[] args) { 
             int[] numbers = new int[5]; 
             System.out.println(numbers[10]);  // 
ArrayIndexOutOfBoundsException 
         } 
     } 

     
11.1.3. Logical Errors: 
 
Logical errors are errors in the logic of your code that lead to incorrect results or behavior. 
Logical error indicates that logic used for coding doesn’t produce expected output. 
 Examples: 
     - Incorrect algorithm implementation. 
     - Misuse of conditional statements. 
 Example Code: 
    java 
     public class Main { 
         public static void main(String[] args) { 
             int x = 10; 
             if (x > 5) { 
                 System.out.println("x is less than 5");  // Incorrect 
message 
             } 
         } 
     } 

     
 



OOP with Java                                                                     11.3                                              Exception Handling 

 

 
 

11.1.4. Compilation Errors: 
 
Errors that prevent the code from being compiled into bytecode. 
 Examples: 
     - Missing imports. 
     - Type mismatch. 
 Example Code: 
     public class Main { 
         public static void main(String[] args) { 
             int num = "Hello";  // Type mismatch error 
         } 
     } 

     
11.2 EXCEPTIONS 
 
An exception is an event that usually signals an erroneous situation at run time. In java, 
exceptions are wrapped up as objects and can be dealt in one of three ways:   

 ignore it, 
 handle it where it occurs 
 handle it at an another place in the program. 

 
The   exception   object   stores   information   about   the   nature   of   the   problem.   For 
example, due to network problem or class not found etc.  
 
A Java Exception is an object that describes the exception that occurs in a program.  
When an exceptional events occurs in java, an exception is said to be thrown. The code that's 
responsible for doing something about the exception is called an exception handler.  
 
11.2.1 Various Categories of Exceptions  
 
11.2.1.1. Checked Exceptions 

The first type of exception is known as a checked exception, and it is an exception 
that is often caused by a user error or a problem that the programmer was unable to 
anticipate. Another way to define checked exceptions is as follows: "Checked exceptions are 
the classes that extend the Throwable class with the exception of Runtime Exception and 
Error." An example of an exception would be the situation in which a file is supposed to be 
opened but the file cannot be located. It is not possible to simply disregard these exceptions 
during the compilation process because they are examined throughout the compilation 
process. The IO Exception, SQL Exception, and other exceptions are examples of checked 
exceptions.  
 
11.2.1.2. Runtime Exceptions 

Exceptions that are not checked during compilation are referred to as runtime 
exceptions. These exceptions are ignored during the compilation process, but they are 
examined when the program is being executed. In addition, the term "Unchecked Exceptions" 
can be described as "The Classes that extend the Runtime Exception class are known as 
Unchecked Exceptions." Examples of exceptions include the Arithmetic Exception and the 
Null Pointer Exception.  

 
 



Centre for Distance Education                                          11.4                               Acharya Nagarjuna University  

 

11.2.1.3 Errors:  
Errors are not exceptions at all; rather, they are problems that originate from 

circumstances that are beyond the control of either the user or the programmer. Errors are 
often disregarded in your code because it is quite unusual that you are able to take any action 
to correct a mistake. Errors will be generated, for instance, in the event that a stack overflow 
takes place. At the time of compilation, they are also disregarded as irrelevant. 
 

 
Figure 11.1 Types of Exceptions 

 
Differences between checked and unchecked exceptions 
Checked Exceptions Unchecked Exceptions 
 represent invalid conditions in areas 

outside the immediate control of the 
program 

 checked at compile time 
 The exception that can be predicted by 

the programmer 
 The classes that extend Throwable class 

except Runtime Exception and Error are 
known as checked exceptions  

 e.g. IO Exception, SQL Exception etc. 
Checked exceptions are checked at 
compile-time. 

 

 represent defects in the program (bugs) 
 
  
 checked at run time 
 Unchecked exception are ignored at 

compile time. 
 The classes that extend Runtime 

Exception are known as unchecked 
exceptions  

 e.g. Arithmetic Exception, Null Pointer 
Exception, Array Index Out Of Bounds 
Exception etc. 

 

 
11.3 HIERARCHY OF EXCEPTIONS 
 

All exception classes are subtypes of the java.lang.Exception class. The exception 
class is a subclass of the Throwable class. Other than the exception class there is another 
subclass called Error which is derived from the Throwable class 



OOP with Java                                                                     11.5                                              Exception Handling 

 

 
 

In Java, exceptions are organized in a hierarchy that extends from the base class Throwable. 
Understanding this hierarchy helps in properly handling exceptions and debugging issues in 
your code. 

 
Figure 11.2 Exception hierarchy 

 
11.3.1 Built in Exceptions:  
 
List of Java Unchecked exceptions under Runtime Exception 

 



Centre for Distance Education                                          11.6                               Acharya Nagarjuna University  

 

List of Java Checked Exceptions defined in java.lang 

 
 
11.4 EXCEPTION HANDLING 
 

Exception Handling is the mechanism to handle runtime malfunctions.  We need to 
handle such exceptions to prevent abrupt termination of program.  The term exception means 
exceptional condition, it is a problem that may arise during the execution of program.  A 
bunch of things can lead to exceptions, including programmer error, hardware failures, files 
that need to be opened cannot be found, resource exhaustion etc 
 

The responsibility of Exceptional Handling is in charge of ensuring that the program 
continues to flow normally. In order to accomplish this, we first make an effort to capture the 
exception object that is thrown by the incorrect condition, and then we should display the 
proper message so that our actions can be corrected. 
 
keywords are used to handle exceptions in Java 

1. try  
2. catch  
3. finally  
4. throw  
5. throws 

 
11.4.1 try – catch block 
 

A method captures an exception by employing a combination of the try and catch operations. 
A try/catch block is employed around the code that has the potential to produce an exception. 
Code included within a try/catch block is known as protected code 
Syntax: 

 
Figure 11.3 try catch block 

 



OOP with Java                                                                     11.7                                              Exception Handling 

 

 
 

An exception catch statement is the declaration of the specific type of exception that 
is being attempted to catch. Whenever an exception arises in protected code, the catch block 
(or blocks) that immediately follows the try statement is examined. If the specific sort of 
exception that has taken place is specified in a catch block, the exception is transferred to the 
catch block in a similar manner as an argument is transferred to a method parameter. 

Let's look at the below two Java programs that demonstrate dividing by zero, one 
without exception handling and one with exception handling. 

 

 
 
 
11.4.1.1 Without Exception Handling 
 
This program demonstrates what happens when you attempt to divide by zero without 
handling the exception. In Java, dividing an integer by zero will throw an 
ArithmeticException. 
public class DivideByZeroWithoutHandling { 
    public static void main(String[] args) { 
        int numerator = 10; 
        int denominator = 0; 
         
        // Attempting to divide by zero 
        int result = numerator / denominator;  // This line will throw an 
ArithmeticException 
 
        System.out.println("Result: " + result);  // This line will not be 
executed 
    } 
} 
 

Output: 
Exception in thread "main" java.lang.ArithmeticException: / by zero 
 at DivideByZeroWithoutHandling.main(DivideByZeroWithoutHandling.java:7) 
As seen from the output, the program terminates abruptly with an ArithmeticException. 



Centre for Distance Education                                          11.8                               Acharya Nagarjuna University  

 

Without Exception Handling, the program throws an ArithmeticException and terminates 
immediately when the exception occurs. 

 
Figure 11.4 without exception handling 

 
11.4.1.2 With Exception Handling 
 
This program shows how to handle a divide-by-zero exception using a try-catch block. It 
allows the program to continue running even if an exception occurs. 
 
public class DivideByZeroWithHandling { 
    public static void main(String[] args) { 
        int numerator = 10; 
        int denominator = 0; 
         
        try { 
            // Attempting to divide by zero 
            int result = numerator / denominator; 
            System.out.println("Result: " + result); 
        } catch (ArithmeticException e) { 
            // Handling the exception 
            System.out.println("Error: Cannot divide by zero."); 
        } 
 
    System.out.println("Program continues after handling the exception."); 
    } 
} 
 

Output: 
Error: Cannot divide by zero. 
Program continues after handling the exception. 

With Exception Handling, the exception is caught in the catch block, allowing the program to 
print a user-friendly error message and continue executing the rest of the code. 
Using exception handling is crucial in ensuring that your program can handle errors 
gracefully and continue running or terminate in a controlled manner. 
 



OOP with Java                                                                     11.9                                              Exception Handling 

 

 
 

 
Fig 11.5 try-catch block 
 
11.4.2 Multiple catch blocks 
 

In Java, multiple catch blocks allow you to handle different types of exceptions that might be 
thrown by a 'try' block. Each catch block is used to handle a specific type of exception. This 
helps in writing more precise and specific error-handling code, enabling the program to 
respond differently depending on the type of exception that occurs. 
 

 
Figure 11.6 multiple catch blocks 

 
Example: 
 
public class MultipleCatchBlocks { 
    public static void main(String[] args) { 
        try { 
            int[] numbers = {1, 2, 3}; 



Centre for Distance Education                                          11.10                               Acharya Nagarjuna University  

 

            int result = 10 / 0;  // This will throw an ArithmeticException 
            System.out.println(numbers[3]);  // This will throw an 
ArrayIndexOutOfBoundsException 
        } catch (ArithmeticException e) { 
            System.out.println("Caught an ArithmeticException: " + 
e.getMessage()); 
        } catch (ArrayIndexOutOfBoundsException e) { 
            System.out.println("Caught an ArrayIndexOutOfBoundsException: " 
+ e.getMessage()); 
        } catch (Exception e) { 
            System.out.println("Caught a general exception: " + 
e.getMessage()); 
        } 
 
        System.out.println("Program continues after handling exceptions."); 
    } 
} 

 
Output: 
Caught an ArithmeticException: / by zero 
Program continues after handling exceptions. 
 
In the above program  
 'try' Block  Contains code that may throw different types of exceptions. In this example: 
     - 'int result = 10 / 0;' throws an 'ArithmeticException'. 
     - 'System.out.println(numbers[3]);' would throw an 'ArrayIndexOutOfBoundsException', 
but it is never reached because of the previous exception. 
 
Catch Blocks 'catch (ArithmeticException e)': This block catches 'ArithmeticException' and 
handles it by printing a message. Since the exception is caught here, the other catch blocks 
are not executed. 
   - 'catch (ArrayIndexOutOfBoundsException e)': This block would catch an 
'ArrayIndexOutOfBoundsException' if it occurred. 
   - 'catch (Exception e)': This is a general catch block that catches any exception that is not 
caught by the previous blocks. It acts as a fallback. 
 
The important things we have to consider in exception handling mechanism are : 
 Order of Catch Blocks: Catch blocks should be ordered from the most specific to the 

most general. This is because Java checks each catch block in sequence, and the first 
block that matches the exception type will be executed. If a more general exception 
type (like 'Exception') is caught before a more specific one (like 'ArithmeticException'), 
the specific block will never be reached, which can lead to compilation errors. 

 Handling Multiple Exceptions: You can handle multiple exceptions of different types in 
the same try block by defining multiple catch blocks. This makes your code more 
robust and easier to debug. 

 Common Superclass: If you want to handle exceptions that share a common superclass, 
you can catch the superclass type. For example, catching 'Exception' will catch any 
checked or unchecked exceptions. 

 
11.4.3   Example: Using a Single Catch Block for Multiple Exceptions  
 
Java 7 introduced multi-catch blocks, allowing multiple exceptions to be caught in a single 
catch block using the '|' (pipe) symbol. 



OOP with Java                                                                     11.11                                              Exception Handling 

 

 
 

public class MultiCatchExample { 
    public static void main(String[] args) { 
        try { 
            int[] numbers = {1, 2, 3}; 
            int result = 10 / 0;  // This will throw an ArithmeticException 
            System.out.println(numbers[3]);  // This will throw an 
ArrayIndexOutOfBoundsException 
        } catch (ArithmeticException | ArrayIndexOutOfBoundsException e) { 
            System.out.println("Caught an exception: " + e.getMessage()); 
        } 
 
        System.out.println("Program continues after handling exceptions."); 
    } 
} 
 

Output: 
Caught an exception: / by zero 
Program continues after handling exceptions. 
 
This code is shorter and less repetitive when multiple exceptions are handled in the same 
way. However, if you need different handling logic for different exceptions, using separate 
catch blocks is still the preferred approach. 
 
11.4.4 Finally block 
 
In Java, the 'finally' block is a block of code that is always executed after the 'try' block, 
regardless of whether an exception was thrown or caught. It is typically used to perform 
clean-up operations, such as closing files, releasing resources, or resetting variables, ensuring 
that these actions are always executed no matter what happens in the 'try' block. 
 
11.4.4.1 Syntax : 
 
The 'finally' block is written after the 'try' and any associated 'catch' blocks. It is optional but 
is often used when resources need to be cleaned up. 
try { 
    // Code that may throw an exception 
} catch (ExceptionType1 e1) { 
    // Handle exception of type ExceptionType1 
} catch (ExceptionType2 e2) { 
    // Handle exception of type ExceptionType2 
} finally { 
    // Code that will always be executed after the try and catch blocks 
} 
 
11.4.4.2 How the 'finally' Block Works 
 
- Always Executed: The code inside the 'finally' block is always executed, even if an 
exception is thrown and caught, or even if there is a return statement in the 'try' or 'catch' 
blocks. 
- Use Cases: It is used for code that must execute regardless of whether an exception occurs 
or not, such as closing files or network connections, releasing locks, or cleaning up memory. 
 



Centre for Distance Education                                          11.12                               Acharya Nagarjuna University  

 

 
Figure 11.7 Finally block 

 
Example  
 
public class FinallyBlockExample { 
    public static void main(String[] args) { 
        try { 
            int result = divide(10, 0);  // This will throw an 
ArithmeticException 
            System.out.println("Result: " + result); 
        } catch (ArithmeticException e) { 
            System.out.println("Caught an ArithmeticException: " + 
e.getMessage()); 
        } finally { 
            System.out.println("This is the finally block. It always 
executes."); 
        } 
 
        System.out.println("Program continues after the try-catch-finally 
block."); 
    } 
 
    public static int divide(int a, int b) { 
        return a / b; 
    } 
} 

 
Output: 
Caught an ArithmeticException: / by zero 
This is the finally block. It always executes. 
Program continues after the try-catch-finally block. 
 
The things we have to remember during the usage of finally keyword are: 
 Always Executes: The 'finally' block executes regardless of whether an exception is 

thrown or caught in the 'try' or 'catch' blocks. 
 Resource Management: It is ideal for closing resources such as file streams, database 

connections, and sockets. This ensures that resources are properly released even if an 
exception occurs. 



OOP with Java                                                                     11.13                                              Exception Handling 

 

 
 

 Exception in 'finally' Block: If an exception is thrown inside the 'finally' block, it will 
override any exception thrown in the 'try' or 'catch' blocks. It’s generally advisable to 
avoid throwing exceptions from the 'finally' block to prevent losing the original 
exception. 

 Return Statements: If there are return statements in the 'try' or 'catch' blocks, the 'finally' 
block will still execute. However, if there is a return statement in the 'finally' block, it 
will override any previous return values from the 'try' or 'catch' blocks. 

 
11.5 THROWS CLAUSE 
 

In Java, the 'throws' clause is used in a method declaration to specify that the method 
might throw one or more exceptions. It informs the compiler and developers using the 
method that they need to handle these exceptions. The 'throws' clause is typically used with 
checked exceptions (exceptions that are checked at compile time). 
 
Syntax  
The 'throws' clause is added to the method signature and lists the exceptions that the method 
may throw. If a method does not handle a checked exception (i.e., does not use a 'try-catch' 
block), it must declare it using the 'throws' clause. 
 
public void methodName() throws ExceptionType1, ExceptionType2 { 
    // Method code that might throw ExceptionType1 or ExceptionType2 
} 
 
Example:  
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.io.IOException; 
 
public class ThrowsExample { 
    public static void main(String[] args) { 
        try { 
            readFile("example.txt"); 
        } catch (IOException e) { 
            System.out.println("Caught IOException: " + e.getMessage()); 
        } 
    } 
 
    // Method declaring that it might throw IOException 
    public static void readFile(String fileName) throws IOException { 
        BufferedReader reader = new BufferedReader(new 
FileReader(fileName)); 
        String line = reader.readLine(); 
        System.out.println(line); 
        reader.close(); 
    } 
} 

The above program illustrates the following points: 
 
1. 'throws IOException' in 'readFile' Method: 

- The 'readFile' method declares that it might throw an 'IOException' using the 'throws' 
clause. 

- The method performs file I/O operations, which might result in an 'IOException' if the 
file does not exist or cannot be read. 



Centre for Distance Education                                          11.14                               Acharya Nagarjuna University  

 

2. Handling the Exception: 
- The 'main' method calls 'readFile' within a 'try' block and catches the potential 

'IOException' using a 'catch' block. 
- This way, 'main' handles the exception, preventing the program from crashing. 

 

We can also observe the following things from the above program: 
1. Checked Exceptions: The 'throws' clause is mainly used for checked exceptions, which 

must be handled either by a 'try-catch' block or by declaring them in the method 
signature using 'throws'. 

2. Unchecked Exceptions: Unchecked exceptions (subclasses of 'RuntimeException') do 
not need to be declared or handled. Therefore, the 'throws' clause is generally not used 
for them, although it can be if desired for clarity. 

3. Method Signature: When a method declares a 'throws' clause, it becomes part of the 
method signature. Any code calling this method must handle the exceptions listed in the 
'throws' clause, either by catching them or by declaring them in its own 'throws' clause. 

4. Multiple Exceptions: A method can declare multiple exceptions in the 'throws' clause, 
separated by commas. 

 
11.6 THROW CLAUSE 
 

In Java, the 'throw' clause is used to explicitly throw an exception from a method or 
any block of code. The 'throw' statement allows you to create an exception and then pass it to 
the runtime system, which searches for an appropriate 'catch' block to handle the exception. 
 

Syntax : 

throw new ExceptionType("Error message"); 

 
Here, 'ExceptionType' is the type of the exception you want to throw (such as 
'ArithmeticException', 'NullPointerException', 'IOException', etc.), and '"Error message"' is a 
string that provides additional details about the exception. 
 

Example  
 
public class ThrowExample { 
    public static void main(String[] args) { 
        try { 
            checkNumber(-5); 
        } catch (IllegalArgumentException e) { 
            System.out.println("Caught an exception: " + e.getMessage()); 
        } 
    } 
 
    public static void checkNumber(int number) { 
        if (number < 0) { 
            throw new IllegalArgumentException("Number must be non-
negative");  // Throwing an exception 
        } 
        System.out.println("Number is: " + number); 
    } 
} 
 

Output: 
Caught an exception: Number must be non-negative 



OOP with Java                                                                     11.15                                              Exception Handling 

 

 
 

The above program illustrates the following things 
1. 'throw new IllegalArgumentException("Number must be non-negative");': This line 

explicitly throws an 'IllegalArgumentException' if the 'number' is negative. The 
message "Number must be non-negative" is passed to the exception, providing details 
about what went wrong. 
 

2. Catching the Exception: In the 'main' method, the 'checkNumber' method is called 
within a 'try' block. If the 'checkNumber' method throws an exception, it is caught by 
the 'catch' block, which prints a message to the console. 

 

When to Use the 'throw' Clause: 
 

- Input Validation: To validate inputs or arguments passed to methods. If an argument 
does not meet the required criteria, an exception can be thrown to indicate an error. 

- Custom Exceptions: When creating custom exceptions, the 'throw' clause is used to 
throw these exceptions. This can provide more specific error messages and help in 
debugging. 

- Error Propagation: To propagate exceptions to higher levels of the program where they 
can be handled appropriately. 

 

Example of Throwing a Custom Exception 
 
// Custom exception class 
class InvalidAgeException extends Exception { 
    public InvalidAgeException(String message) { 
        super(message); 
    } 
} 
 
public class CustomExceptionExample { 
    public static void main(String[] args) { 
        try { 
            validateAge(15); 
        } catch (InvalidAgeException e) { 
            System.out.println("Caught a custom exception: " + 
e.getMessage()); 
        } 
    } 
 
    public static void validateAge(int age) throws InvalidAgeException { 
        if (age < 18) { 
            throw new InvalidAgeException("Age must be 18 or older to 
register");  // Throwing a custom exception 
        } 
        System.out.println("Age is valid for registration."); 
    } 
} 

Output: 
Caught a custom exception: Age must be 18 or older to register 
 
Using the 'throw' statement effectively allows for precise error handling and helps maintain 
robust and reliable code. 
 
 
 



Centre for Distance Education                                          11.16                               Acharya Nagarjuna University  

 

11.7 SUMMARY 
 

Java exception handling is a mechanism that helps manage errors and exceptions, 
ensuring robust and error-free code execution. This chapter covers various types of errors in 
Java programs, such as syntax errors, runtime errors, and logical errors. It explores the 
hierarchy of exceptions, starting from the base class Throwable and branching into Error and 
Exception subclasses, with further distinctions between checked and unchecked exceptions.  

 
The chapter discusses key concepts in exception handling, including the try-catch 

blocks for capturing and managing exceptions, the finally block for executing cleanup code, 
the throws clause for declaring exceptions that a method might throw, and the throw clause 
for explicitly throwing exceptions. Together, these tools allow developers to write more 
reliable and maintainable Java programs by properly handling unexpected events and errors 
 
11.8 TECHNICAL TERMS 
 
Error, exception, try, catch, throw , throws 
 
11.9  SELF ASSESSMENT QUESTIONS 

 
Essay questions: 

1. What is exception handling in Java, and why is it important? explain with examples 
2. Explain with examples the use of multiple catch blocks in handling different 

exceptions. 
3. How do you explicitly throw an exception in Java? Provide an example. 
4. Give an example of a method that uses the throws clause to indicate a checked 

exception. 
 
Short Answer Questions:   

1. What are the different types of errors in a Java program? 
2. What is an Error in Java, and how is it different from an Exception? 
3. Explain the difference between checked and unchecked exceptions in Java. 
4. What happens if an exception is thrown in the finally block? 

 
11.10 SUGGESTED READINGS 
 

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”, 
McGraw Hill, 1st Edition, 2013.  

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 
2018.  

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education, 
Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:  

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.  
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition, 

2007.  
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd 

Edition, 2014 
 
 
         Dr. U. SURYA KAMESWARI 



LESSON- 12 

THREADS 
 
OBJECTIVES: 
 
After going through this lesson, you will be able to  
 
 Understand what single-tasking is and how it contrasts with multi-tasking 
 Differentiate between process-based and thread-based multi-tasking 
 Learn about the various uses of threads in Java 
 Learn the different ways to create a thread in Java 
 Familiarize with important methods of the Thread class 

 
STRUCTURE: 
 
12.1. Introduction 
12.2. Single Tasking 
12.3. Multi-Tasking 
12.4. Uses of Threads 
12.5. Thread Life Cycle 
12.6. Creating a Thread and Running it 
12.7. Terminating the Thread 

   12.7.1 Using a Volatile Flag 
   12.7.2. Using the interrupt () Method: 

12.8. Thread Class Methods 
12.9. Summary 
12.10. Technical Term 
12.11. Self-Assessment Question 
12.12. Further Readings 
 
12.1  INTRODUCTION 
 

The direction or path that is taken while a program is being executed is referred to as a 
thread in the Java programming language. In general, every program has at least one thread, 
which is referred to as the main thread. This thread is provided by the Java Virtual Machine 
(JVM) at the beginning of the execution of the program. At this moment, the main thread is 
the one that calls the main() method. This occurs when the main thread is specified.  
 
         The execution thread of a program is referred to as a thread. When an application is 
executing on the Java Virtual Machine, it is possible for the application to run many threads 
of execution simultaneously. Some threads have a higher priority than others. The execution 
of higher priority threads comes before the execution of lower priority threads. 
 
         The reason why thread is so important to the program is that it makes it possible for 
several actions to take place within a single procedure. In many cases, the program counter, 
stack, and local variable are all assigned to each individual thread in the program.  
 
         Java's Thread feature allows for concurrent execution, which helps to divide work and 
increase overall speed. When it comes to successfully managing processes such as 



Centre for Distance Education                                           12.2                              Acharya Nagarjuna University  
 

input/output and network connection, it is absolutely necessary. For Java applications to be 
responsive, having a solid understanding of threads is essential. 
 
12.2  SINGLE TASKING 
 

Single-tasking refers to a mode of operation in computing where only one task or 
process is executed at a time. In a single-tasking system, the CPU handles one task and then 
moves on to the next only after the current task has been completed. Executing the tasks is of 
two types. One is single tasking and another is multi-tasking 
 

Single Tasking is executing only one task at a time is called single tasking. In this single 
tasking the microprocessor will be sitting idle for most of the time. This means microprocessor 
time is wasted. 
 
Characteristics of Single-Tasking: 
 
 Sequential Execution: Only one process or application is active at any given moment. 

Once the task finishes, another can start. 
 Resource Utilization: System resources (CPU, memory) are dedicated to a single task, 

which can simplify resource management but limit overall system efficiency. 
 Simplicity: Single-tasking systems are simpler to implement because there's no need to 

manage multiple tasks simultaneously. 
 
Example: 
An old-style operating system like MS-DOS is an example of a single-tasking environment. 
When running MS-DOS, you could only execute one program at a time. Once you finished 
running a program, you could start another one. 
 
12.3 MULTI TASKING 
 

The term "multitasking" refers to the capability of a computer system to carry out 
many tasks at the same time or in time intervals that overlap with one another. It is possible 
to accomplish this through two different methods: multitasking by utilizing several processes 
or multitasking by utilizing numerous threads. The utilization of threads is the primary 
emphasis of Java's multitasking capabilities. 
 
There exist two clearly identified categories of multitasking:  
 Process-based and  
 Thread-based.  

 
It is crucial to clarify the distinction between two. Process is the term used to define the 

Program in active execution. Thus, process-based multitasking is the capability that enables 
your computer to execute two or more programs simultaneously. For instance, we can 
concurrently utilize the Java compiler and text editor services. One other illustration is our 
capacity to perceive the music and simultaneously obtain the printed materials from the 
printer.  
 

The thread is the fundamental unit of dispatchable code in the thread-based 
multitasking environment. This implies that a single program has the capability to include 
multiple components, each of which is referred to as a Thread module. For instance, the text 



OOP with Java                          12.3                                                        Threads  

 
 

editor has the capability to both Format the text and Print it. While Java applications utilize 
process-based multitasking environments, the specific architecture of these environments is 
not well defined. 
 

 
Figure 12.1: Process based multitasking 

 
 

 
Figure 12.2: Thread based multitasking 

 
 
Process-Based Multitasking Thread – based Multitasking 
 This deals with "Big Picture"                                             
 These are Heavyweight tasks                                            
 Inter-process   communication   is   
expensive   and limited  
 Context switching from one process 
to another is costly in terms of memory  
 This is not under the control of Java    

 This deals with Details 
 These are Lightweight tasks 
 Inter-Thread communication is 
inexpensive.  
 Context switching is low cost in terms 
of memory, because they run on the same 
address space  
 This is controlled by java 

 
12.4 USES OF THREADS 
 

Threads in Java are used to achieve concurrent execution, which allows multiple tasks 
to be performed simultaneously or in overlapping periods. This can improve the performance 
and responsiveness of applications.  
 



Centre for Distance Education                                           12.4                              Acharya Nagarjuna University  
 

1. Improving Application Responsiveness 
-  User Interfaces: In GUI applications (e.g., Swing, JavaFX), threads are used to keep the 

user interface responsive. For example, background tasks like loading data or performing 
computations are run in separate threads so that the main UI thread remains responsive to 
user inputs. 

 

2. Parallel Processing 
-   Data Processing: Threads can be used to process large datasets in parallel. For instance, 

you can split data into chunks and process each chunk in a separate thread to speed up 
computation. 

 

3. Asynchronous Operations 
-  Non-blocking Tasks: Threads allow for asynchronous execution of tasks that would 

otherwise block the main thread, such as network calls or file I/O operations. This ensures 
that other tasks can proceed while waiting for the asynchronous operation to complete. 

 

4. Handling Multiple Client Connections 
-   Server Applications: In server applications, such as web servers or chat servers, threads are 

used to handle multiple client connections simultaneously. Each client request can be 
processed in a separate thread, allowing the server to handle multiple requests 
concurrently. 

 

5. Real-Time Systems 
-   Real-Time Processing: In systems that require real-time processing, such as video games 

or real-time data analysis, threads can be used to ensure that tasks are performed within 
strict timing constraints. 

 

6. Periodic Tasks 
-   Scheduled Tasks: Threads are used to perform periodic tasks, such as regular data updates 

or scheduled maintenance tasks. The 'ScheduledExecutorService' can be used to schedule 
tasks to run at fixed intervals or after a delay. 

 

7. Background Tasks 
-  Long-Running Operations: Threads are useful for executing long-running background tasks 

without blocking the main execution flow. For example, you might use threads to perform 
background data processing or resource loading. 

 

8. Parallel Algorithms 
-   Computational Algorithms: Many algorithms can benefit from parallel execution. Threads 

can be used to implement parallel algorithms, such as divide-and-conquer strategies or 
parallel sorting algorithms. 

 
9. Task Coordination 
-   Coordinating Tasks: Threads can be used to coordinate complex task execution flows, such 

as task dependencies and inter-task communication. Java provides mechanisms like 
'CountDownLatch', 'CyclicBarrier', and 'Semaphore' to manage coordination between 
threads. 

 
10. Thread Pools and Resource Management 
-  Efficient Resource Use: Thread pools are used to efficiently manage a large number of 

tasks by reusing a fixed number of threads. This avoids the overhead of creating and 
destroying threads frequently and helps in managing system resources. 



OOP with Java                          12.5                                                        Threads  

 
 

Threads in Java provide a powerful mechanism for concurrent and parallel processing, 
allowing for improved performance, responsiveness, and resource management. They enable 
various use cases from improving application responsiveness and handling multiple client 
connections to performing parallel computations and managing periodic tasks. Properly 
managing threads and ensuring thread safety are crucial for building robust and efficient 
multi-threaded applications. 
 
12.5  THREAD LIFE CYCLE 
 
The Java thread lifecycle refers to the various stages that a thread undergoes from its creation 
to its termination. 
 

 
Figure 12.3 Thread life cycle 

 
 New: When a thread is first created but hasn't yet started running, it is in the "New" 

state. At this point, the thread is not eligible for execution. 
 Runnable: Once the thread's start() method is called, the thread moves to the 

"Runnable" state. This doesn’t mean the thread is currently running; it simply means 
it’s ready to run and is waiting for CPU time. The thread could be actively running or 
just waiting for its turn to execute. 

 Blocked: A thread enters the "Blocked" state when it is waiting to acquire a lock or 
resource that is currently held by another thread. It will remain blocked until the 
resource becomes available. 

 Waiting: In the "Waiting" state, a thread is waiting indefinitely for another thread to 
perform a particular action. This state is typically reached by calling methods like 
Object.wait(). 

 Timed Waiting: This is similar to the "Waiting" state, but the thread waits for a 
specific period of time. It might use methods like Thread.sleep() or 
Object.wait(long timeout) to enter this state. The thread will return to the runnable 
state either when the specified time elapses or when another thread interrupts it. 

 Terminated: A thread moves to the "Terminated" state when it has finished its 
execution. This means the thread has completed its run() method or has been 
terminated due to an exception. 



Centre for Distance Education                                           12.6                              Acharya Nagarjuna University  
 

Below is the execution flow of Thread life cycle i.e. how a thread goes into ready state from 
born state and from ready to running and finally into Dead state. 
 

Initially, a thread is in the "New" state after being instantiated but not yet started. 
Once the start() method is invoked, the thread transitions to the "Runnable" state, where it 
is eligible for execution by the CPU. During its execution, a thread may enter the "Blocked" 
state if it needs to wait for a resource or lock held by another thread, or the "Waiting" state if 
it waits indefinitely for a specific condition. It can also be in the "Timed Waiting" state if it 
waits for a specific period. Finally, a thread moves to the "Terminated" state upon completing 
its task or if it is terminated due to an exception. Understanding this lifecycle is crucial for 
effective thread management and synchronization in Java applications. 
 
12.6 CREATING A THREAD AND RUNNING IT 
 
In Java, there are two primary ways to create a thread: 
 
1. Extending the 'Thread' Class:  
 
-  We can create a new thread by subclassing the 'Thread' class and overriding its 'run()' 

method. This method contains the code that will be executed when the thread starts. After 
creating an instance of your subclass, we invoke the 'start()' method to begin execution. 

 
   class MyThread extends Thread { 
       public void run() { 
           // Code to be executed by the thread 
       } 
   } 
 
   public class Main { 
       public static void main(String[] args) { 
           MyThread t = new MyThread(); 
           t.start(); 
       } 
   } 

 
2. Implementing the 'Runnable' Interface:  
 
   - Another way to create a thread is by implementing the 'Runnable' interface, which     
     requires we to define the 'run()' method. You then pass an instance of our 'Runnable' 

implementation to a 'Thread' object and start the thread by calling its 'start()' method. 
 
   class MyRunnable implements Runnable { 
       public void run() { 
           // Code to be executed by the thread 
       } 
   } 
 
   public class Main { 
       public static void main(String[] args) { 
           MyRunnable myRunnable = new MyRunnable(); 
           Thread t = new Thread(myRunnable); 
           t.start(); 
       } 
   } 

 



OOP with Java                          12.7                                                        Threads  

 
 

Both approaches have their use cases. Extending 'Thread' is straightforward but limits 
your ability to inherit from other classes since Java supports single inheritance. Implementing 
'Runnable' is more flexible, allowing our class to extend other classes while still being able to 
run in its own thread. 
 
12.7 TERMINATING THE THREAD 
 
A terminated thread means it is dead and no longer available. 
A thread may remain in the terminated state for the following reasons: 
 Termination occurs when a thread normally finishes its work. 
 Sometimes threads may terminate due to unusual events like segmentation faults, 

exceptions. Such termination may be termed abnormal termination. 
Terminating a thread in Java requires a cooperative approach.  
 
12.7.1 Using a Volatile Flag: 
 
Create a volatile boolean variable (e.g., isRunning) in your thread class. 
In our thread's run () method, periodically check the value of this flag. If it's set to false, exit 
the loop and terminate the thread. 
From another thread, set the flag to false when you want to terminate the thread. 
public class MyThread extends Thread { 
    private volatile boolean isRunning = true; 
 
    public void run() { 
        while (isRunning) { 
            // Do some work 
        } 
    } 
    public void stopRunning() { 
        isRunning = false; 
    } 
} 
 
12.7.2. Using the interrupt () Method: 
 
Use the interrupt () method on the thread you want to terminate. 
Inside the thread's run () method, check for the interrupt status using Thread. Interrupted () or 
catch the Interrupted Exception. 
If the thread is interrupted, perform any necessary cleanup and exit the loop. 
 
public class MyThread extends Thread { 
    public void run() { 
        try { 
            while (!Thread.interrupted()) { 
                // Do some work 
            } 
        } catch (InterruptedException e) { 
            // Thread interrupted, perform cleanup 
        } 
    } 
} 

 
 
 
 



Centre for Distance Education                                           12.8                              Acharya Nagarjuna University  
 

12.8 THREAD CLASS METHODS 
 

The Thread class in Java provides several methods to manage thread behavior and 
interact with thread execution. The following picture depicts the various thread methods. 

 
Figure 12.4: Thread class methods 

 
When we write MyThread t1=new MyThread() then thread is in the New/Born state. 
When we call t.start() method then thread enters into Ready State or Runnable State. 
If Thread Scheduler allocates the processor to Thread then Thread enters into Running State. 
If run() method completes successfully then thread enters into Dead State. 
above are the basic main states of the Thread. but apart from this it has some condition 
through that it goes into different states like waiting state,suspended state,sleeping state.the 
full description is below. 
 

start() 
Begins the execution of the thread. It invokes the run() method in a new thread of execution. 
Thread t = new Thread(); 
t.start(); 
 

run() 
ontains the code that constitutes the new thread’s task. This method should be overridden in a 
subclass of Thread or in a Runnable object. 
public void run() { 
    // Thread code here 
} 
 

interrupt(): 
Interrupts the thread, setting its interrupt flag. If the thread is blocked in a method like sleep() 
or wait(), it will throw an InterruptedException. 
thread.interrupt(); 

 
 
 



OOP with Java                          12.9                                                        Threads  

 
 

yield() 
 If a running thread calls the Thread.yield() method then thread enters into ready state from 
running state to give chance to other waiting thread of same priority immediately. 
Thread.yield(); 

 
join() 
If a Thread calls the join() method then it enters into waiting state and if this thread comes out 
from waiting state/blocked state then it enters into Ready/Runnable state but here is some 
condition to come out from the waiting state is- 
A) If thread completes its own execution 
B) If time expires. 
C)   If waiting thread got interrupted. 
thread.join(); // Waits indefinitely for the thread to finish 
thread.join(1000); // Waits up to 1 second 

 
sleep()  
If running thread calls the sleep() then immediately enters into sleeping state. now thread will 
come out of this state to ready state only when-  
                   A) If time expires. 
                   B) If sleeping thread got interrupted. 
This method can throw an InterruptedException. 
Thread.sleep(1000); // Sleeps for 1 second 

 
wait() 
If thread calls the wait() method then running thread will enters into waiting state. if this 
thread got any notification by method notify()/notifyAll() then it enters into another waiting 
state to get lock.so when the thread comes out of waiting state to another waiting state to get 
lock is- 
A) If waiting thread got notification. 
B) If time expires. 
C) If waiting thread got interrupted. 
Now thread which is in the another waiting state will go to ready state when it get the lock. 
 
synchronized (someObject) { 
    while (!condition) { 
        someObject.wait(); // Wait until notified or interrupted 
    } 
} 

 
suspend()  
If running thread calls the suspend() method now thread enters into 
suspended state and it will comes out form there to ready state only when 
it will call the resume() method. 
 
thread.suspend(); // Deprecated method 
thread.resume();  // Deprecated method to resume 

 
stop() 
If running thread calls the stop() method then immediately enters into dead state. 
thread.stop(); // Deprecated method 

 
 
 



Centre for Distance Education                                           12.10                              Acharya Nagarjuna University  
 

12.9 SUMMARY 
 

The chapter on Java Threads explores the concept of threads and their importance in 
modern programming. It begins by contrasting single-tasking, where a single task is executed 
sequentially, with multi-tasking, which allows multiple tasks to run concurrently, enhancing 
the performance and responsiveness of applications. Threads are lightweight processes that 
facilitate multi-tasking in Java by enabling concurrent execution within a program. The 
chapter explains various uses of threads, such as performing background operations, 
improving application responsiveness, and managing multiple tasks simultaneously. It covers 
the two primary ways to create and run threads in Java: by extending the Thread class or 
implementing the Runnable interface. It also discusses how to manage the lifecycle of a 
thread, including starting and terminating threads, and provides an overview of key thread 
class methods, such as start(), run(), sleep(), and join(), which are essential for thread 
management and synchronization. 
 
12.10 TECHNICAL TERMS 
 
Thread, single tasking, multi-tasking, lightweight process, Synchronization. 
 
12.11 SELF ASSESSMENT QUESTIONS 
 
Essay questions: 

1. What is a thread in Java? Describe the life cycle of a thread with a diagram. 
2. Describe two ways to create a thread in Java, including code examples. 
3. What are the key methods provided by the Thread class in Java? Describe at least five 

methods with examples. 
4. How can a thread be terminated in Java? Discuss different ways to stop a thread, 

including the use of the interrupt() method. 
 

Short Answer Questions:   
1. How does multi-threading differ from multi-tasking? 
2. Name two ways to create a thread in Java. 
3. What is a daemon thread in Java? 
4. Name the method used to check if a thread is alive. 
5. What is the purpose of the join() method in the Thread class? 

 
12.12 SUGGESTED READINGS 
 

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”, 
McGraw Hill, 1st Edition, 2013.  

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 
2018.  

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education, 
Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:  

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.  
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition, 

2007.  
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd 

Edition, 2014 
 
         Dr. U. SURYA KAMESWARI 


